Protective Effect of Cocoa Bean Shell against Intestinal Damage: An Example of Byproduct Valorization.

Daniela Rossin, Letricia Barbosa-Pereira, Noemi Iaia, Barbara Sottero, Alice Costanza Danzero, Giuseppe Poli, Giuseppe Zeppa, Fiorella Biasi
Author Information
  1. Daniela Rossin: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy. ORCID
  2. Letricia Barbosa-Pereira: Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. ORCID
  3. Noemi Iaia: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy. ORCID
  4. Barbara Sottero: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
  5. Alice Costanza Danzero: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
  6. Giuseppe Poli: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
  7. Giuseppe Zeppa: Department of Agricultural, Forestry, and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy. ORCID
  8. Fiorella Biasi: Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy. ORCID

Abstract

BACKGROUND: Cocoa bean shell (CBS), a main byproduct of cocoa processing, represents a source of components such as polyphenols and methylxanthines, which have been associated with a reduced risk of several diseases. Therefore, CBS has potential application as a food ingredient. Intestinal mucosa is exposed to immune and inflammatory responses triggered by dietary agents, such as oxysterols, which derive from cholesterol oxidation and are pro-oxidant compounds able to affect intestinal function. We aimed at investigating the capability of the Forastero cultivar CBS, added or not added to ice cream, to protect against the intestinal barrier damage induced by a dietary oxysterol mixture.
METHODS: Composition and antioxidant capacity of in vitro digested CBS and CBS-enriched ice cream were analyzed by high-performance liquid chromatography and 1,1-diphenyl-2-picryl-hydrazyl radical-scavenging assay, respectively. CaCo-2 cells differentiated into enterocyte-like monolayer were incubated with 60 µM oxysterol mixture in the presence of CBS formulations.
RESULTS: The oxysterol mixture induced tight junction impairment, interleukin-8 and monocyte chemoattractant protein-1 cell release, and oxidative stress-related nuclear factor erythroid 2 p45-related factor 2 response Nrf2. Both CBSs protected cells from these adverse effects, probably thanks to their high phenolic content. CBS-enriched ice cream showed the highest antioxidant capacity. Theobromine, which is in high concentrations of CBS, was also tested. Although theobromine exerted no effect on Nrf2 expression, its anti-inflammatory cooperating activity in CBS effect cannot be excluded.
CONCLUSIONS: Our findings suggest that CBS-enriched ice cream may be effective in the prevention of gut integrity damage associated with oxidative/inflammatory reactions.

Keywords

References

  1. Nutrients. 2016 Apr 09;8(4):212 [PMID: 27070643]
  2. Redox Biol. 2018 Apr;14:588-599 [PMID: 29154190]
  3. Dig Dis Sci. 2007 Sep;52(9):2015-21 [PMID: 17404859]
  4. Adv Nutr. 2020 Jan 1;11(1):77-91 [PMID: 31268137]
  5. Molecules. 2018 Jun 09;23(6): [PMID: 29890752]
  6. Cell Physiol Biochem. 2015;37(2):432-44 [PMID: 26315049]
  7. Waste Manag. 2019 May 1;90:72-83 [PMID: 31088675]
  8. Front Immunol. 2018 Jun 05;9:1270 [PMID: 29922293]
  9. Front Immunol. 2017 Jun 09;8:677 [PMID: 28649251]
  10. Food Chem Toxicol. 2014 Jul;69:289-93 [PMID: 24727230]
  11. Int J Inflam. 2010 Jul 06;2010:574568 [PMID: 21188215]
  12. Gastroenterology. 1990 May;98(5 Pt 1):1199-207 [PMID: 2323513]
  13. Steroids. 2015 Jul;99(Pt B):259-65 [PMID: 25683893]
  14. Crit Rev Food Sci Nutr. 2016;56(1):1-12 [PMID: 24915376]
  15. Front Pharmacol. 2015 Feb 20;6:30 [PMID: 25750625]
  16. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  17. J Affect Disord. 2006 Jun;92(2-3):149-59 [PMID: 16546266]
  18. Mol Cell Biol. 2012 Sep;32(17):3414-27 [PMID: 22733993]
  19. Food Res Int. 2018 Nov;113:234-244 [PMID: 30195517]
  20. Mol Aspects Med. 2018 Jun;61:31-40 [PMID: 29421170]
  21. Psychopharmacology (Berl). 2019 Feb;236(2):561-572 [PMID: 30706099]
  22. J Food Sci. 2011 Aug;76(6):C909-15 [PMID: 22417489]
  23. Food Chem Toxicol. 2010 Dec;48(12):3289-303 [PMID: 20870006]
  24. Molecules. 2016 Jul 11;21(7): [PMID: 27409600]
  25. Int Immunopharmacol. 2020 Mar 5;82:106226 [PMID: 32146317]
  26. Biosci Trends. 2019 Jan 22;12(6):526-536 [PMID: 30606977]
  27. Front Immunol. 2017 Sep 29;8:1207 [PMID: 29033932]
  28. Lipids Health Dis. 2015 Aug 11;14:89 [PMID: 26260472]
  29. Food Funct. 2015 Apr;6(4):1218-28 [PMID: 25736858]
  30. Gut. 2019 Aug;68(8):1516-1526 [PMID: 31076401]
  31. Nutrients. 2019 May 31;11(6): [PMID: 31159179]
  32. J Lipid Res. 2005 Nov;46(11):2468-76 [PMID: 16150823]
  33. Antioxidants (Basel). 2020 Nov 22;9(11): [PMID: 33266403]
  34. Antioxidants (Basel). 2019 May 31;8(6): [PMID: 31151323]
  35. Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5439 [PMID: 20516177]
  36. Molecules. 2016 Jul 27;21(8): [PMID: 27472311]
  37. Exp Mol Med. 2018 Aug 16;50(8):1-9 [PMID: 30115904]
  38. Int J Clin Pract. 2019 Oct;73(10):e13385 [PMID: 31243854]
  39. Oxid Med Cell Longev. 2016;2016:9346470 [PMID: 27478535]
  40. Nat Rev Immunol. 2009 Nov;9(11):799-809 [PMID: 19855405]
  41. Biochem Biophys Res Commun. 2018 Mar 4;497(2):521-526 [PMID: 29428726]
  42. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  43. J Agric Food Chem. 2020 Feb 19;68(7):1816-1829 [PMID: 31265272]
  44. Food Funct. 2014 Jun;5(6):1113-24 [PMID: 24803111]
  45. Eur J Nutr. 2020 Dec;59(8):3503-3516 [PMID: 31965293]
  46. Biochimie. 1986 Sep;68(9):1035-40 [PMID: 3096381]
  47. Arch Biochem Biophys. 2020 Nov 15;694:108591 [PMID: 32961113]
  48. Free Radic Biol Med. 2017 Dec;113:539-550 [PMID: 29102636]
  49. J Nutr Biochem. 2017 Nov;49:30-41 [PMID: 28863367]
  50. Front Biosci (Landmark Ed). 2018 Jan 1;23:852-864 [PMID: 28930576]
  51. J Cardiovasc Pharmacol. 2009 Dec;54(6):483-90 [PMID: 19701098]
  52. Arch Biochem Biophys. 2015 May 1;573:84-91 [PMID: 25795020]
  53. Semin Immunopathol. 2014 Mar;36(2):211-26 [PMID: 24667924]
  54. Int J Mol Sci. 2020 Jul 06;21(13): [PMID: 32640524]

Grants

  1. BIAF_RILO_17_01/Università degli Studi di Torino
  2. BIAF_RILO_18_01/Università degli Studi di Torino
  3. BIAF_FFABR_17_01/Ministero dell'Istruzione, dell'Università e della Ricerca
  4. 609402-2020/FP7 People: Marie-Curie Actions
  5. IJCI-2017-31665/Ministerio de Ciencia, Innovación y Universidades

Word Cloud

Created with Highcharts 10.0.0CBSicecreamdietaryintestinaloxysterolmixtureCBS-enrichedNrf2CocoapolyphenolsassociatedIntestinaloxysterolsaddedbarrierdamageinducedantioxidantcapacitycellstightfactor2hightheobromineeffectBACKGROUND:beanshellmainbyproductcocoaprocessingrepresentssourcecomponentsmethylxanthinesreducedriskseveraldiseasesThereforepotentialapplicationfoodingredientmucosaexposedimmuneinflammatoryresponsestriggeredagentsderivecholesteroloxidationpro-oxidantcompoundsableaffectfunctionaimedinvestigatingcapabilityForasterocultivarprotectMETHODS:Compositionvitrodigestedanalyzedhigh-performanceliquidchromatography11-diphenyl-2-picryl-hydrazylradical-scavengingassayrespectivelyCaCo-2differentiatedenterocyte-likemonolayerincubated60µMpresenceformulationsRESULTS:junctionimpairmentinterleukin-8monocytechemoattractantprotein-1cellreleaseoxidativestress-relatednuclearerythroidp45-relatedresponseCBSsprotectedadverseeffectsprobablythanksphenoliccontentshowedhighestTheobromineconcentrationsalsotestedAlthoughexertedexpressionanti-inflammatorycooperatingactivityexcludedCONCLUSIONS:findingssuggestmayeffectivepreventiongutintegrityoxidative/inflammatoryreactionsProtectiveEffectBeanShellDamage:ExampleByproductValorizationIL-8MCP-1epithelialinflammationjunctions

Similar Articles

Cited By (11)