Targeted Physical Therapy Combined with Spasticity Management Changes Motor Development Trajectory for a 2-Year-Old with Cerebral Palsy.

Corri L Stuyvenberg, Shaaron E Brown, Ketaki Inamdar, Megan Evans, Lin-Ya Hsu, Olivier Rolin, Regina T Harbourne, Sarah Westcott McCoy, Michele A Lobo, Natalie A Koziol, Stacey C Dusing
Author Information
  1. Corri L Stuyvenberg: Rehabilitation Science Graduate Program, University of Minnesota Medical School, MMC 388, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
  2. Shaaron E Brown: Department of Physical Therapy, Virginia Commonwealth University Health System, 1300 East Marshall Street, PO Box 980419, Richmond, VA 23298, USA.
  3. Ketaki Inamdar: Rehabilitation and Movement Science Program, College of Health Professions, Virginia Commonwealth University, 900 E. Leigh Street, Richmond, VA 23298, USA. ORCID
  4. Megan Evans: College of Health Professions, Virginia Commonwealth University, 900 E. Leigh Street, Richmond, VA 23298, USA.
  5. Lin-Ya Hsu: Department of Rehabilitation Medicine, Division of Physical Therapy, University of Washington, 1959 NE Pacific Street, Box 356490, Seattle, WA 98195, USA.
  6. Olivier Rolin: Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University Health Sciences, 1223 E. Marshall Street PO Box 980677, Richmond, VA 23298, USA.
  7. Regina T Harbourne: Rangos School of Health Sciences, Physical Therapy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA.
  8. Sarah Westcott McCoy: Department of Rehabilitation Medicine, Division of Physical Therapy, University of Washington, 1959 NE Pacific Street, Box 356490, Seattle, WA 98195, USA.
  9. Michele A Lobo: Department of Physical Therapy and Biomechanics & Movement Science Program, University of Delaware, 540 S. College Ave., Newark, DE 19711, USA. ORCID
  10. Natalie A Koziol: Nebraska Center for Research on Children, Youth, Families & Schools, University of Nebraska Lincoln, 160 Prem S. Paul Research Center at Whittier School, Lincoln, NE 68583, USA.
  11. Stacey C Dusing: Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E Alcazar Street. CHP 155, Los Angeles, CA 90033, USA. ORCID

Abstract

Therapies for children with cerebral palsy (CP) often fail to address essential components of early rehabilitation: intensity, child initiation, and an embodied approach. Sitting Together And Reaching To Play (START-Play) addresses these issues while incorporating intensive family involvement to maximize therapeutic dosage. While START-Play was developed and tested on children aged 7-16 months with motor delays, the theoretical construct can be applied to intervention in children of broader ages and skills levels. This study quantifies the impact of a broader START-Play intervention combined with Botulinum toxin-A (BoNT-A) and phenol on the developmental trajectory of a 24 month-old child with bilateral spastic CP. In this AB +1 study, A consisted of multiple baseline assessments with the Gross Motor Function Measure-66 and the Assessment of Problem Solving in Play. The research participant demonstrated a stable baseline during A and changes in response to the combination of BoNT-A/phenol and 12 START-Play sessions during B, surpassing the minimal clinically important difference on the Gross Motor Function Measure-66. The follow-up data point (+1) was completed after a second round of BoNT-A/phenol injections. While the findings suggest the participant improved his gross motor skills with BoNT-A/phenol and START-Play, further research is needed to generalize these findings.

Keywords

References

  1. Infancy. 2000 Apr;1(2):149-219 [PMID: 32680291]
  2. Phys Ther. 2020 Aug 12;100(8):1343-1352 [PMID: 32329778]
  3. Dev Med Child Neurol. 1971 Apr;13(2):164-73 [PMID: 5562858]
  4. Trends Cogn Sci. 2003 Aug;7(8):343-348 [PMID: 12907229]
  5. Child Dev. 2011 Jan-Feb;82(1):17-32 [PMID: 21291426]
  6. Dev Med Child Neurol. 2017 Mar;59(3):246-258 [PMID: 27925172]
  7. Phys Ther. 2018 Jun 1;98(6):494-502 [PMID: 29767802]
  8. J Pediatr Orthop. 2000 Jan-Feb;20(1):108-15 [PMID: 10641699]
  9. Phys Occup Ther Pediatr. 2021 Feb 1;:1-19 [PMID: 33517815]
  10. Funct Neurol. 2001 Oct-Dec;16(4):317-23 [PMID: 11853322]
  11. Annu Rev Psychol. 2001;52:453-70 [PMID: 11148313]
  12. Arch Phys Med Rehabil. 2004 Jul;85(7):1121-4 [PMID: 15241761]
  13. Disabil Rehabil. 2017 Apr;39(7):619-630 [PMID: 27027325]
  14. Dev Med Child Neurol. 2008 Dec;50(12):918-25 [PMID: 19046185]
  15. BMC Pediatr. 2015 Apr 01;15:30 [PMID: 25880227]
  16. Dev Med Child Neurol. 2017 Jun;59(6):574-580 [PMID: 28224606]
  17. BMC Pediatr. 2018 Feb 9;18(1):46 [PMID: 29426320]
  18. Eur J Neurol. 2010 Aug;17 Suppl 2:9-37 [PMID: 20633177]
  19. Phys Ther. 2021 Feb 4;101(2): [PMID: 33382406]
  20. Phys Ther. 2000 Sep;80(9):873-85 [PMID: 10960935]
  21. Dev Med Child Neurol. 2002 Oct;44(10):666-75 [PMID: 12418791]
  22. J Pediatr Neurosci. 2017 Oct-Dec;12(4):338-343 [PMID: 29675072]
  23. Dev Med Child Neurol. 2016 Sep;58(9):900-9 [PMID: 27027732]
  24. Pediatr Phys Ther. 2017 Jul;29 Suppl 3:S57-S63 [PMID: 28654478]
  25. JAMA Netw Open. 2019 Jan 4;2(1):e187529 [PMID: 30681716]
  26. Arch Phys Med Rehabil. 2002 Nov;83(11):1592-6 [PMID: 12422331]
  27. Dev Neurorehabil. 2020 Feb;23(2):73-105 [PMID: 31411523]
  28. J Rehabil Med. 2017 Jun 28;49(6):482-488 [PMID: 28537343]
  29. Child Dev Perspect. 2011 Dec;5(4):260-266 [PMID: 22125575]
  30. Phys Ther. 2010 Dec;90(12):1823-37 [PMID: 20966209]
  31. Front Hum Neurosci. 2014 Jun 27;8:377 [PMID: 25018713]
  32. PM R. 2015 Oct;7(10):1073-1080 [PMID: 26032347]
  33. Phys Ther. 2013 Jan;93(1):94-103 [PMID: 23001524]
  34. Indian J Pediatr. 1994 May-Jun;61(3):249-55 [PMID: 7959998]
  35. Arch Phys Med Rehabil. 2018 Jun;99(6):1160-1176.e5 [PMID: 29288113]
  36. JAMA Pediatr. 2017 Sep 1;171(9):897-907 [PMID: 28715518]
  37. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3 [PMID: 32086598]
  38. Phys Ther. 1994 Aug;74(8):768-76 [PMID: 8047564]
  39. Neuropediatrics. 1999 Jun;30(3):120-4 [PMID: 10480205]
  40. Dev Med Child Neurol. 1999 Apr;41(4):226-32 [PMID: 10355805]
  41. J Pediatr Psychol. 2016 Jun;41(5):531-42 [PMID: 26702629]
  42. Phys Ther. 2019 Jun 1;99(6):786-796 [PMID: 30810750]
  43. J Clin Orthop Trauma. 2012 Dec;3(2):77-81 [PMID: 26403442]
  44. Phys Ther. 2019 Jun 1;99(6):748-760 [PMID: 30810752]
  45. J R Soc Interface. 2017 Sep;14(134): [PMID: 28904005]
  46. Dev Med Child Neurol. 2011 Mar;53(3):239-44 [PMID: 21087238]
  47. Pediatrics. 2013 Sep;132(3):e735-46 [PMID: 23958771]
  48. Acta Paediatr. 2010 Aug;99(8):1156-62 [PMID: 20222884]

Grants

  1. R324A150103/Institute of Education Sciences

Word Cloud

Created with Highcharts 10.0.0START-PlaychildreninterventionMotorBoNT-A/phenolcerebralpalsyCPearlychildPlaymotorbroaderskillsstudyBotulinumtoxin-Aphenol+1baselineGrossFunctionMeasure-66researchparticipantfindingsTherapiesoftenfailaddressessentialcomponentsrehabilitation:intensityinitiationembodiedapproachSittingTogetherReachingaddressesissuesincorporatingintensivefamilyinvolvementmaximizetherapeuticdosagedevelopedtestedaged7-16monthsdelaystheoreticalconstructcanappliedageslevelsquantifiesimpactcombinedBoNT-Adevelopmentaltrajectory24month-oldbilateralspasticABconsistedmultipleassessmentsAssessmentProblemSolvingdemonstratedstablechangesresponsecombination12sessionsBsurpassingminimalclinicallyimportantdifferencefollow-updatapointcompletedsecondroundinjectionssuggestimprovedgrossneededgeneralizeTargetedPhysicalTherapyCombinedSpasticityManagementChangesDevelopmentTrajectory2-Year-OldCerebralPalsyphysicaltherapy

Similar Articles

Cited By