Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens.

Naran Naren, Xue-Xian Zhang
Author Information
  1. Naran Naren: School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand.
  2. Xue-Xian Zhang: School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand.

Abstract

Autoactivation of two-component systems (TCSs) can increase the sensitivity to signals but inherently cause a delayed response. Here, we describe a unique negative feedback mechanism enabling the global NtrB/NtrC regulator to rapidly respond to nitrogen starvation over the course of histidine utilization (hut) in Pseudomonas fluorescens. NtrBC directly activates transcription of hut genes, but overexpression will produce excess ammonium leading to NtrBC inactivation. To prevent this from occurring, the histidine-responsive repressor HutC fine-tunes ntrBC autoactivation: HutC and NtrC bind to the same operator site in the ntrBC promoter. This newly discovered low-affinity binding site shows little sequence similarity with the consensus sequence that HutC recognizes for substrate-specific induction of hut operons. A combination of genetic and transcriptomic analysis indicated that both ntrBC and hut promoter activities cannot be stably maintained in the ΔhutC background when histidine fluctuates at high concentrations. Moreover, the global carbon regulator CbrA/CbrB is involved in directly activating hut transcription while de-repressing hut translation via the CbrAB-CrcYZ-Crc/Hfq regulatory cascade. Together, our data reveal that the local transcription factor HutC plays a crucial role in governing NtrBC to maintain carbon/nitrogen homeostasis through the complex interactions between two TCSs (NtrBC and CbrAB) at the hut promoter.

References

  1. J Bacteriol. 1990 Sep;172(9):5470-6 [PMID: 2203753]
  2. J Bacteriol. 1981 Mar;145(3):1286-92 [PMID: 6259129]
  3. Curr Opin Genet Dev. 2017 Apr;43:110-119 [PMID: 28359978]
  4. J Bacteriol. 2011 Dec;193(24):6929-38 [PMID: 21984792]
  5. J Mol Biol. 2006 Jun 16;359(4):1107-24 [PMID: 16701695]
  6. PLoS Comput Biol. 2010 Feb 12;6(2):e1000676 [PMID: 20168997]
  7. Infect Immun. 2020 Jun 22;88(7): [PMID: 32341119]
  8. Sci Rep. 2019 Jun 24;9(1):9110 [PMID: 31235731]
  9. Genetics. 2007 Aug;176(4):2165-76 [PMID: 17717196]
  10. Environ Microbiol. 1999 Jun;1(3):243-57 [PMID: 11207743]
  11. J Bacteriol. 2010 Oct;192(19):4801-11 [PMID: 20675498]
  12. Nucleic Acids Res. 2014 Feb;42(4):2099-111 [PMID: 24243859]
  13. Genome Biol. 2009;10(5):R51 [PMID: 19432983]
  14. J Bacteriol. 2017 Aug 22;199(18): [PMID: 28696277]
  15. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5909-13 [PMID: 2874557]
  16. Proteins. 2017 Aug;85(8):1580-1588 [PMID: 28383128]
  17. J Bacteriol. 2017 Aug 22;199(18): [PMID: 28674072]
  18. Nucleic Acids Res. 2009 Dec;37(22):7678-90 [PMID: 19825982]
  19. mBio. 2017 May 16;8(3): [PMID: 28512092]
  20. Methods Enzymol. 1980;65(1):499-560 [PMID: 6246368]
  21. Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12349-54 [PMID: 23836653]
  22. J Bacteriol. 2020 Jun 9;202(13): [PMID: 32291279]
  23. New Biol. 1990 Jan;2(1):5-9 [PMID: 1964084]
  24. mBio. 2020 Mar 17;11(2): [PMID: 32184258]
  25. Cell Rep. 2018 Sep 11;24(11):3061-3071.e6 [PMID: 30208328]
  26. J Bacteriol. 2000 Feb;182(4):1144-9 [PMID: 10648542]
  27. J Bacteriol. 1968 Aug;96(2):396-402 [PMID: 5674054]
  28. J Microbiol Methods. 2014 Dec;107:182-5 [PMID: 25447885]
  29. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  30. FEMS Microbiol Rev. 2010 Sep;34(5):658-84 [PMID: 20412307]
  31. PLoS Comput Biol. 2011 Nov;7(11):e1002265 [PMID: 22125482]
  32. Microbiology (Reading). 2002 May;148(Pt 5):1561-1569 [PMID: 11988531]
  33. Cold Spring Harb Symp Quant Biol. 1961;26:249-56 [PMID: 14468226]
  34. Microbiol Mol Biol Rev. 2012 Sep;76(3):565-84 [PMID: 22933560]
  35. Mol Microbiol. 2017 Aug;105(4):589-605 [PMID: 28557013]
  36. Gene. 1989 Apr 15;77(1):61-8 [PMID: 2744488]
  37. Trends Genet. 2014 Jun;30(6):211-9 [PMID: 24774859]
  38. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  39. J Mol Biol. 2016 Sep 25;428(19):3752-75 [PMID: 27519796]
  40. Bioessays. 2008 Jun;30(6):542-55 [PMID: 18478531]
  41. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71 [PMID: 20080802]
  42. Nat Methods. 2005 Jun;2(6):443-8 [PMID: 15908923]
  43. J Mol Biol. 2010 Aug 27;401(4):671-80 [PMID: 20600106]
  44. Genetics. 2008 Jan;178(1):185-95 [PMID: 18202367]
  45. Life Sci Soc Policy. 2018 Aug 12;14(1):18 [PMID: 30099657]
  46. Gene. 1991 Dec 20;109(1):167-8 [PMID: 1661697]
  47. mBio. 2013 Nov 19;4(6):e00881-13 [PMID: 24255125]
  48. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  49. Nucleic Acids Res. 2007;35(5):1432-40 [PMID: 17284458]
  50. Sci Rep. 2020 Mar 25;10(1):5400 [PMID: 32214184]
  51. Cell. 1998 Feb 6;92(3):291-4 [PMID: 9476889]
  52. Mol Microbiol. 2001 May;40(4):917-31 [PMID: 11401699]
  53. Mol Microbiol. 2002 Dec;46(5):1247-57 [PMID: 12453212]
  54. J Bacteriol. 2015 Sep;197(17):2867-78 [PMID: 26148710]
  55. J Exp Biol. 2001 Sep;204(Pt 18):3225-34 [PMID: 11581338]

MeSH Term

Bacterial Proteins
Binding Sites
Carbon
Feedback, Physiological
Gene Expression Regulation, Bacterial
Histidine
Homeostasis
Nitrogen
Promoter Regions, Genetic
Pseudomonas fluorescens
Repressor Proteins
Transcription Factors
Transcriptional Activation

Chemicals

Bacterial Proteins
Repressor Proteins
Transcription Factors
Histidine
Carbon
Nitrogen

Word Cloud

Created with Highcharts 10.0.0hutNtrBCtranscriptionHutCntrBCpromoterTCSsglobalregulatorhistidinePseudomonasfluorescensdirectlysitesequencelocalfactorgoverningcarbon/nitrogenhomeostasisAutoactivationtwo-componentsystemscanincreasesensitivitysignalsinherentlycausedelayedresponsedescribeuniquenegativefeedbackmechanismenablingNtrB/NtrCrapidlyrespondnitrogenstarvationcourseutilizationactivatesgenesoverexpressionwillproduceexcessammoniumleadinginactivationpreventoccurringhistidine-responsiverepressorfine-tunesautoactivation:NtrCbindoperatornewlydiscoveredlow-affinitybindingshowslittlesimilarityconsensusrecognizessubstrate-specificinductionoperonscombinationgenetictranscriptomicanalysisindicatedactivitiesstablymaintainedΔhutCbackgroundfluctuateshighconcentrationsMoreovercarbonCbrA/CbrBinvolvedactivatingde-repressingtranslationviaCbrAB-CrcYZ-Crc/HfqregulatorycascadeTogetherdatarevealplayscrucialrolemaintaincomplexinteractionstwoCbrABRolecellular

Similar Articles

Cited By