Why and how do termite kings and queens live so long?

Eisuke Tasaki, Mamoru Takata, Kenji Matsuura
Author Information
  1. Eisuke Tasaki: Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
  2. Mamoru Takata: Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
  3. Kenji Matsuura: Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.

Abstract

Lifespan varies greatly across the tree of life. Of the various explanations for this phenomenon, those that involve trade-offs between reproduction and longevity have gained considerable support. There is an important exception: social insect reproductives (queens and in termites, also kings) exhibit both high reproductive outputs and extraordinarily long lives. As both the ultimate and proximate mechanisms underlying the absence of the fecundity/longevity trade-off could shed light on the unexpected dynamics and molecular mechanisms of extended longevity, reproductives of social insects have attracted much attention in the field of ageing research. Here, we highlight current ecological and physiological studies on ageing and discuss the various possible evolutionary and molecular explanations of the extended lifespans of termite reproductives. We integrate these findings into a coherent framework revealing the evolution of longevity in these reproductives. Studies on termites may explain why and how ageing is shaped by natural selection. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'

Keywords

References

  1. Trends Ecol Evol. 2019 Jun;34(6):519-530 [PMID: 30857756]
  2. J Exp Biol. 2005 Dec;208(Pt 24):4671-8 [PMID: 16326948]
  3. Nat Rev Cancer. 2002 Jan;2(1):38-47 [PMID: 11902584]
  4. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20376-81 [PMID: 22021441]
  5. Insect Biochem Mol Biol. 2008 Aug;38(8):805-15 [PMID: 18625404]
  6. Open Biol. 2016 May;6(5): [PMID: 27249798]
  7. Nature. 1993 Mar 25;362(6418):305-11 [PMID: 8455716]
  8. J Gerontol A Biol Sci Med Sci. 2017 Aug 1;72(8):1054-1061 [PMID: 27688483]
  9. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511 [PMID: 29784790]
  10. Bioessays. 2005 Oct;27(10):999-1010 [PMID: 16163709]
  11. Biogerontology. 2000;1(4):289-307 [PMID: 11708211]
  12. Curr Opin Insect Sci. 2016 Aug;16:vii-x [PMID: 27720060]
  13. Biol Lett. 2007 Jun 22;3(3):331-5 [PMID: 17412673]
  14. J Theor Biol. 1966 Sep;12(1):12-45 [PMID: 6015424]
  15. Biol Rev Camb Philos Soc. 2008 Aug;83(3):295-313 [PMID: 18979593]
  16. Aging (Albany NY). 2012 Dec;4(12):861-77 [PMID: 23425777]
  17. Curr Opin Insect Sci. 2016 Aug;16:69-75 [PMID: 27720053]
  18. Cell Signal. 2012 May;24(5):981-90 [PMID: 22286106]
  19. J Invertebr Pathol. 2007 May;95(1):17-25 [PMID: 17241640]
  20. Curr Biol. 2011 Sep 27;21(18):R701-7 [PMID: 21959160]
  21. J Comp Physiol B. 2008 May;178(4):439-45 [PMID: 18180931]
  22. Nature. 1977 Nov 24;270(5635):301-4 [PMID: 593350]
  23. Insect Biochem Mol Biol. 2005 Mar;35(3):207-15 [PMID: 15705500]
  24. Genes Dev. 2000 May 1;14(9):1085-97 [PMID: 10809667]
  25. Philos Trans R Soc Lond B Biol Sci. 2021 Apr 26;376(1823):20190732 [PMID: 33678022]
  26. Proc Biol Sci. 2015 May 7;282(1806):20150209 [PMID: 25833848]
  27. Nature. 2000 Nov 9;408(6809):239-47 [PMID: 11089981]
  28. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12896-901 [PMID: 9789011]
  29. Oxid Med Cell Longev. 2018 Feb 13;2018:5127251 [PMID: 29636846]
  30. Antioxid Redox Signal. 2013 Jul 20;19(3):321-9 [PMID: 22870907]
  31. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):531-46 [PMID: 42059]
  32. Proc Biol Sci. 2019 Sep 25;286(1911):20191604 [PMID: 31530150]
  33. Curr Biol. 2014 May 19;24(10):R453-62 [PMID: 24845678]
  34. PLoS One. 2017 Jan 11;12(1):e0167412 [PMID: 28076409]
  35. Aging (Albany NY). 2013 Dec;5(12):867-83 [PMID: 24323947]
  36. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6838-42 [PMID: 12011442]
  37. Science. 2009 May 22;324(5930):1029-33 [PMID: 19460998]
  38. J Insect Sci. 2010;10:44 [PMID: 20572790]
  39. Cell. 2007 Mar 23;128(6):1089-103 [PMID: 17346786]
  40. Insect Mol Biol. 2018 Dec;27(6):808-814 [PMID: 29989656]
  41. Aging Cell. 2016 Jun;15(3):542-52 [PMID: 27072046]
  42. Annu Rev Physiol. 2013;75:621-44 [PMID: 23190075]
  43. Biol Lett. 2020 Apr;16(4):20200049 [PMID: 32264784]
  44. Cell Cycle. 2006 Sep;5(18):2087-102 [PMID: 17012837]
  45. PLoS Genet. 2010 Jan 22;6(1):e1000826 [PMID: 20107607]
  46. Science. 2010 Apr 16;328(5976):321-6 [PMID: 20395504]
  47. N Engl J Med. 2009 Oct 8;361(15):1475-85 [PMID: 19812404]
  48. Gen Comp Endocrinol. 2007 May 15;152(1):102-10 [PMID: 17434168]
  49. Biol Rev Camb Philos Soc. 2016 May;91(2):483-97 [PMID: 25765468]
  50. J Exp Biol. 2011 Dec 15;214(Pt 24):4223-33 [PMID: 22116766]
  51. Philos Trans R Soc Lond B Biol Sci. 2021 Apr 26;376(1823):20190739 [PMID: 33678015]
  52. Biochem J. 2009 Jan 1;417(1):1-13 [PMID: 19061483]
  53. Sci Rep. 2020 May 18;10(1):8187 [PMID: 32424344]
  54. Science. 2004 Mar 12;303(5664):1626-32 [PMID: 15016989]
  55. Trends Endocrinol Metab. 2013 May;24(5):257-68 [PMID: 23597489]
  56. J Insect Physiol. 2008 Jun;54(6):922-30 [PMID: 18541259]
  57. Bull Entomol Res. 2007 Jun;97(3):321-5 [PMID: 17524164]
  58. Curr Opin Insect Sci. 2016 Aug;16:64-68 [PMID: 27720052]
  59. Free Radic Biol Med. 2000 May 15;28(10):1456-62 [PMID: 10927169]
  60. Physiol Rev. 2002 Jan;82(1):47-95 [PMID: 11773609]
  61. J Insect Physiol. 2005 Nov;51(11):1200-9 [PMID: 16081092]
  62. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4499-504 [PMID: 16537425]
  63. J Biol Chem. 2007 Jan 19;282(3):1973-9 [PMID: 17114795]
  64. Mol Cell Endocrinol. 2009 Feb 5;299(1):39-50 [PMID: 18682271]
  65. Nature. 2000 Nov 9;408(6809):233-8 [PMID: 11089980]
  66. Curr Opin Insect Sci. 2016 Aug;16:1-8 [PMID: 27720042]
  67. Curr Biol. 2012 Nov 20;22(22):2140-3 [PMID: 23084993]
  68. Exp Gerontol. 2011 May;46(5):376-81 [PMID: 20849947]
  69. Curr Opin Insect Sci. 2016 Aug;16:104-107 [PMID: 27720043]
  70. Aging (Albany NY). 2018 Oct 11;10(10):2668-2683 [PMID: 30312170]
  71. Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 [PMID: 17848967]
  72. J Insect Sci. 2009;9:6 [PMID: 19611249]
  73. BMC Genomics. 2019 Sep 9;20(1):702 [PMID: 31500567]
  74. Mol Cell. 2010 Oct 22;40(2):179-204 [PMID: 20965415]
  75. Proc Natl Acad Sci U S A. 2018 May 22;115(21):5504-5509 [PMID: 29735660]
  76. Front Zool. 2008 Sep 29;5:15 [PMID: 18822181]
  77. J Cell Biol. 2014 Jun 9;205(5):663-75 [PMID: 24914237]
  78. Nature. 2005 Feb 3;433(7025):516-9 [PMID: 15690040]
  79. Biol Lett. 2018 Mar;14(3): [PMID: 29514993]
  80. PLoS One. 2019 Feb 13;14(2):e0210371 [PMID: 30759161]
  81. Front Genet. 2015 Mar 04;6:9 [PMID: 25788900]

MeSH Term

Animals
Isoptera
Life History Traits
Longevity
Reproduction
Social Behavior

Word Cloud

Created with Highcharts 10.0.0longevityreproductivesageingsocialvariousexplanationsqueenstermiteskingsmechanismsmolecularextendedinsectstermiteevolutionLifespanvariesgreatlyacrosstreelifephenomenoninvolvetrade-offsreproductiongainedconsiderablesupportimportantexception:insectalsoexhibithighreproductiveoutputsextraordinarilylonglivesultimateproximateunderlyingabsencefecundity/longevitytrade-offshedlightunexpecteddynamicsattractedmuchattentionfieldresearchhighlightcurrentecologicalphysiologicalstudiesdiscusspossibleevolutionarylifespansintegratefindingscoherentframeworkrevealingStudiesmayexplainshapednaturalselectionarticlepartthemeissue'Ageingsociality:socialitychangepatterns?'livelong?ageinghomeostasishypoxia

Similar Articles

Cited By