Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions.

Adyasa Priyadarsini, Bhabani S Mallik
Author Information
  1. Adyasa Priyadarsini: Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India.
  2. Bhabani S Mallik: Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India.

Abstract

Molecular oxygen and hydrogen can be obtained from the water-splitting process through the electrolysis technique. However, harnessing energy is very challenging in this way due to the involvement of the 4e reaction pathway, which is associated with a substantial amount of reaction barrier. After the report of the first N-doped graphene acting as an oxygen reduction reaction catalyst, the scientific community set out on exploring more reliable doping materials, better material engineering techniques, and developing computational models to explain the interfacial reactions. In this study, we modeled the graphene surface with four different nonmetal doping atoms N, B, P, and S individually by replacing a carbon atom from one of the graphitic positions. We report the mechanism of the complete catalytic cycle for each of the doped surfaces by the doping atom. The energy barriers for individual steps were explored using the biased first-principles molecular dynamics simulations to overcome the high reaction barrier. We explain the active sites and provide a comparison between the activation energy obtained by the application of two computational methods. Observing the rate-determining step, that is, oxo-oxo bond formation, S-doped graphene is the most effective. In contrast, N-doped graphene seems to be the least useful for oxygen evolution catalysis compared to the undoped graphene surface. B-doped graphene and P-doped graphene have an equivalent impact on the catalytic cycle.

References

  1. Science. 2004 Oct 22;306(5696):666-9 [PMID: 15499015]
  2. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  3. Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710 [PMID: 9986014]
  4. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  5. RSC Adv. 2019 Feb 19;9(11):6035-6041 [PMID: 35517278]
  6. J Phys Chem C Nanomater Interfaces. 2018 Nov 15;122(45):25882-25892 [PMID: 30467515]
  7. J Comput Chem. 2006 Nov 30;27(15):1787-99 [PMID: 16955487]
  8. Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 [PMID: 9895674]
  9. J Am Chem Soc. 2014 May 7;136(18):6542-5 [PMID: 24773085]
  10. Chem Commun (Camb). 2019 Jan 10;55(5):628-631 [PMID: 30556069]
  11. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 [PMID: 12271136]
  12. Nanoscale Horiz. 2018 May 1;3(3):317-326 [PMID: 32254080]
  13. RSC Adv. 2020 Jun 9;10(36):21387-21398 [PMID: 35518781]
  14. ACS Omega. 2020 Mar 06;5(10):5142-5149 [PMID: 32201801]
  15. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  16. Adv Mater. 2014 May;26(18):2925-30 [PMID: 24510748]
  17. Science. 1912 Sep 27;36(926):385-94 [PMID: 17836492]
  18. J Nanosci Nanotechnol. 2013 Mar;13(3):1746-51 [PMID: 23755584]
  19. Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1221-8; discussion 1228 [PMID: 17971331]
  20. ACS Appl Mater Interfaces. 2019 Oct 23;11(42):39062-39067 [PMID: 31564093]
  21. Nanoscale. 2012 Feb 21;4(4):1184-9 [PMID: 22159283]
  22. Phys Chem Chem Phys. 2013 Oct 21;15(39):16819-27 [PMID: 24002442]
  23. Nat Commun. 2013;4:2390 [PMID: 23979080]
  24. Nat Commun. 2018 Nov 1;9(1):4565 [PMID: 30385759]
  25. Chem Sci. 2019 Sep 10;10(40):9165-9181 [PMID: 32015799]
  26. Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11496-500 [PMID: 23055257]
  27. J Comput Chem. 2004 Sep;25(12):1463-73 [PMID: 15224390]
  28. Phys Chem Chem Phys. 2011 Oct 21;13(39):17505-10 [PMID: 21946759]
  29. Phys Chem Chem Phys. 2014 Jan 7;16(1):103-9 [PMID: 24220278]
  30. Nanotechnology. 2013 Jun 7;24(22):225705 [PMID: 23644929]
  31. Nanoscale. 2015 Mar 14;7(10):4514-21 [PMID: 25682836]
  32. Phys Chem Chem Phys. 2015 Jul 14;17(26):16779-83 [PMID: 26050615]
  33. Phys Rev Lett. 2003 Jun 13;90(23):238302 [PMID: 12857293]
  34. Sci Rep. 2018 Aug 22;8(1):12595 [PMID: 30135558]
  35. Phys Chem Chem Phys. 2017 Mar 22;19(12):8530-8540 [PMID: 28288218]
  36. Sci Rep. 2015 Mar 20;5:9304 [PMID: 25790856]
  37. J Mol Graph Model. 2006 Oct;25(2):247-60 [PMID: 16458552]

Word Cloud

Created with Highcharts 10.0.0graphenereactionoxygenenergydopingobtainedbarrierreportN-dopedcomputationalexplainsurfaceNBPSatomcatalyticcycleMolecularhydrogencanwater-splittingprocesselectrolysistechniqueHoweverharnessingchallengingwaydueinvolvement4epathwayassociatedsubstantialamountfirstactingreductioncatalystscientificcommunitysetexploringreliablematerialsbettermaterialengineeringtechniquesdevelopingmodelsinterfacialreactionsstudymodeledfourdifferentnonmetalatomsindividuallyreplacingcarbononegraphiticpositionsmechanismcompletedopedsurfacesbarriersindividualstepsexploredusingbiasedfirst-principlesmoleculardynamicssimulationsovercomehighactivesitesprovidecomparisonactivationapplicationtwomethodsObservingrate-determiningstepoxo-oxobondformationS-dopedeffectivecontrastseemsleastusefulevolutioncatalysiscomparedundopedB-dopedP-dopedequivalentimpactEffectsDopedAtomsGraphenetowardOxygenEvolutionReactions

Similar Articles

Cited By