Effects of multiple stressors on northern leopard frogs in agricultural wetlands.

David J Marcogliese, Kayla C King, Kieran A Bates
Author Information
  1. David J Marcogliese: Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, Quebec H2Y 2E7, Canada. ORCID
  2. Kayla C King: Department of Biology, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada.
  3. Kieran A Bates: Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.

Abstract

Natural and anthropogenic stressors, including parasites and pesticides, may induce oxidative stress in animals. Measuring oxidative stress responses in sentinel species that are particularly responsive to environmental perturbations not only provides insight into host physiology but is also a useful readout of ecosystem health. Newly metamorphosed northern leopard frogs (Lithobates pipiens), a sentinel species, were collected from agricultural and non-agricultural wetlands exposed to varying concentrations of the herbicide atrazine. Significant effects of certain parasites' abundance and their interaction with atrazine exposure on frog oxidative stress were identified. Specifically, increased protein levels were detected in frogs infected with echinostome metacercariae. In addition, the nematode Oswaldocruzia sp. was significantly associated with increased thiol concentration and catalase activity. Significant parasite × atrazine interactions were observed for atrazine exposure and the abundance of Oswaldocruzia sp. on thiol, as thiol concentrations increased with parasite abundance at low atrazine localities and decreased in high atrazine wetlands. In addition, a significant interaction between the abundances of Oswaldocruzia sp. and gorgoderid trematodes on thiol concentrations was observed. These findings demonstrate that studies of oxidative stress on animals in natural ecosystems should account for the confounding effects of parasitism, particularly for amphibians in agricultural landscapes.

Keywords

References

  1. J Helminthol. 2006 Jun;80(2):137-49 [PMID: 16768857]
  2. Ecotoxicology. 2008 Apr;17(3):153-63 [PMID: 17987383]
  3. Comp Biochem Physiol C Toxicol Pharmacol. 2004 Jan;137(1):43-51 [PMID: 14984703]
  4. Environ Health Perspect. 2010 Jan;118(1):20-32 [PMID: 20056568]
  5. Dev Comp Immunol. 2001 Oct-Dec;25(8-9):853-73 [PMID: 11602200]
  6. Aquat Toxicol. 2007 Feb 28;81(2):159-67 [PMID: 17194491]
  7. Chemosphere. 2004 Apr;55(2):167-74 [PMID: 14761689]
  8. Parasit Vectors. 2017 Feb 6;10(1):65 [PMID: 28166838]
  9. Arch Environ Contam Toxicol. 2004 Nov;47(4):489-95 [PMID: 15499499]
  10. Dis Aquat Organ. 2005 Jan 25;63(1):77-84 [PMID: 15759803]
  11. ILAR J. 2007;48(3):270-7 [PMID: 17592188]
  12. PLoS One. 2012;7(7):e41950 [PMID: 22844535]
  13. Aquat Toxicol. 2003 Dec 10;65(4):337-60 [PMID: 14568351]
  14. Ann N Y Acad Sci. 2011 Mar;1223:108-19 [PMID: 21449968]
  15. J Environ Sci Health B. 2017 Jul 3;52(7):476-482 [PMID: 28541126]
  16. Sci Total Environ. 2009 Jan 15;407(3):1055-64 [PMID: 18992921]
  17. Ecol Appl. 2010 Dec;20(8):2263-72 [PMID: 21265456]
  18. Ecotoxicology. 2007 Nov;16(8):533-9 [PMID: 17701347]
  19. Braz J Med Biol Res. 1996 Dec;29(12):1715-33 [PMID: 9222437]
  20. Environ Pollut. 2009 Nov;157(11):2903-27 [PMID: 19500891]
  21. Arch Environ Contam Toxicol. 2014 Apr;66(3):415-29 [PMID: 24276472]
  22. Crit Rev Toxicol. 2017 Jul;47(6):509-535 [PMID: 28425344]
  23. Exp Physiol. 1997 Mar;82(2):291-5 [PMID: 9129943]
  24. Z Parasitenkd. 1983;69(1):119-26 [PMID: 6404067]
  25. Science. 2004 Dec 3;306(5702):1783-6 [PMID: 15486254]
  26. Heliyon. 2020 Mar 29;6(3):e03570 [PMID: 32258456]
  27. Ecol Lett. 2008 Nov;11(11):1238-1251 [PMID: 18803642]
  28. Fish Shellfish Immunol. 2003 Nov;15(5):467-71 [PMID: 14550672]
  29. Dev Comp Immunol. 1999 Sep;23(6):459-72 [PMID: 10512457]
  30. Dis Aquat Organ. 2000 Sep 28;42(3):233-6 [PMID: 11104076]
  31. Ecohealth. 2012 Sep;9(3):342-60 [PMID: 22810498]
  32. Comp Biochem Physiol A Mol Integr Physiol. 2019 Mar;229:25-32 [PMID: 30502473]
  33. Trends Ecol Evol. 2004 Jun;19(6):274-6 [PMID: 16701268]
  34. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9900-4 [PMID: 12118118]
  35. Ecol Lett. 2009 Jan;12(1):75-92 [PMID: 19016828]
  36. Aquat Toxicol. 2009 Jan 31;91(2):126-34 [PMID: 19019467]
  37. Carcinogenesis. 1996 Sep;17(9):2023-8 [PMID: 8824530]
  38. Biomarkers. 2003 May-Aug;8(3-4):167-86 [PMID: 12944171]
  39. Mar Biotechnol (NY). 2010 Aug;12(4):361-79 [PMID: 20352271]
  40. Dis Aquat Organ. 2000 Jan 14;39(2):155-8 [PMID: 10715822]
  41. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):71-83 [PMID: 18930878]
  42. Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149 [PMID: 21782649]
  43. PLoS One. 2012;7(7):e41475 [PMID: 22911795]
  44. Ann N Y Acad Sci. 2010 May;1195:129-48 [PMID: 20536821]
  45. Environ Chem. 2018 Nov 28;16(1):55-67 [PMID: 34316289]
  46. Sci Total Environ. 2010 Aug 15;408(18):3746-62 [PMID: 19922980]
  47. Vet Immunol Immunopathol. 2008 Dec 15;126(3-4):171-98 [PMID: 18783835]
  48. Parasitology. 2012 Oct;139(12):1666-71 [PMID: 22894856]
  49. Biochim Biophys Acta. 2002 Oct 10;1573(1):4-8 [PMID: 12383935]
  50. Parasitology. 2007 Dec;134(Pt.14):2063-80 [PMID: 17672926]
  51. Parasitol Int. 2008 Jun;57(2):110-20 [PMID: 18373973]
  52. Toxicol Rep. 2020 Aug 16;7:1075-1082 [PMID: 32923373]
  53. Sci Total Environ. 2019 May 15;665:797-809 [PMID: 30790752]
  54. J Parasitol. 2008 Feb;94(1):13-22 [PMID: 18372616]
  55. Fish Physiol Biochem. 2016 Apr;42(2):711-47 [PMID: 26607273]
  56. Ecotoxicol Environ Saf. 2011 Jul;74(5):1370-80 [PMID: 21550114]
  57. Oecologia. 2014 Jul;175(3):811-23 [PMID: 24839093]
  58. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1688-707 [PMID: 22566676]
  59. Environ Sci Pollut Res Int. 2012 Jul;19(6):2007-23 [PMID: 22532120]
  60. Int J Occup Environ Health. 2006 Jul-Sep;12(3):260-7 [PMID: 16967834]
  61. Environ Sci Pollut Res Int. 2013 Feb;20(2):601-11 [PMID: 22992987]
  62. Trends Parasitol. 2011 Mar;27(3):123-30 [PMID: 21144800]
  63. Ecotoxicol Environ Saf. 2006 Jun;64(2):178-89 [PMID: 16406578]
  64. Med Sci Monit. 2004 Jun;10(6):RA141-7 [PMID: 15173684]
  65. J Parasitol. 1997 Aug;83(4):575-83 [PMID: 9267395]
  66. Ecohealth. 2016 Mar;13(1):111-22 [PMID: 26911919]
  67. Ecol Lett. 2019 Jun;22(6):962-972 [PMID: 30895712]
  68. J Biol Chem. 1974 Nov 25;249(22):7130-9 [PMID: 4436300]
  69. Oecologia. 2009 Aug;161(2):371-85 [PMID: 19543919]
  70. Environ Health Perspect. 1995 May;103 Suppl 4:13-7 [PMID: 7556018]

MeSH Term

Animals
Atrazine
Herbicides
Molineoidae
Prevalence
Quebec
Rana pipiens
Stress, Physiological
Strongylida Infections
Trematoda
Trematode Infections
Wetlands

Chemicals

Herbicides
Atrazine

Word Cloud

Created with Highcharts 10.0.0atrazineoxidativestressfrogsthiolnorthernleopardagriculturalwetlandsconcentrationsabundanceincreasedOswaldocruziaspstressorsanimalssentinelspeciesparticularlyLithobatespipiensSignificanteffectsinteractionexposureadditionparasiteobservedparasitismNaturalanthropogenicincludingparasitespesticidesmayinduceMeasuringresponsesresponsiveenvironmentalperturbationsprovidesinsighthostphysiologyalsousefulreadoutecosystemhealthNewlymetamorphosedcollectednon-agriculturalexposedvaryingherbicidecertainparasites'frogidentifiedSpecificallyproteinlevelsdetectedinfectedechinostomemetacercariaenematodesignificantlyassociatedconcentrationcatalaseactivity×interactionslowlocalitiesdecreasedhighsignificantabundancesgorgoderidtrematodesfindingsdemonstratestudiesnaturalecosystemsaccountconfoundingamphibianslandscapesEffectsmultipleAmphibianslysozyme

Similar Articles

Cited By