Antibacterial activity of selected invertebrate species.

Salwa Mansur Ali, Ruqaiyayh Siddiqui, Kuppusamy A Sagathevan, Naveed Ahmed Khan
Author Information
  1. Salwa Mansur Ali: Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
  2. Ruqaiyayh Siddiqui: College of Arts and Sciences, American University of Sharjah, Sharjah, UAE.
  3. Kuppusamy A Sagathevan: Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
  4. Naveed Ahmed Khan: Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE. naveed5438@gmail.com. ORCID

Abstract

The evolution of multiple-drug resistant bacteria is contributing to the global antimicrobial crisis, hence driving us to search for novel antimicrobial(s). Among animals, invertebrates represent up to 80% of all known species suggesting their wide distribution. Despite their ubiquitous and plentiful nature, they have been largely unexplored as potential source of antibacterials. In this study, we selected a broad range of invertebrates from terrestrial and marine environments and tested their lysates for antibacterial activity against methicillin-resistant Staphylococcus aereus (MRSA) and neuropathogenic Escherichia coli K1. Cockroaches, centipedes, tarantulas, prawns, lobster, and mud crabs showed antibacterial activity with selected lysates exhibiting more than 90% bactericidal effects. The red-headed centipede's hemolymph showed 90% and 50% bacteriostatic activity against MRSA and E. coli K1, respectively. Tarantula's body extracts exhibited antibacterial activity against MRSA and E. coli K1. Gut extracts of tiger prawn exhibited more than 90% bacteriostatic activity against both bacteria. The selected lobster and mud crab extract exhibited up to 90% growth inhibitory activity against MRSA. Overall, these results showed that selected invertebrates are an untapped source of broad-spectrum antibacterial activity and suggest the presence of biologically active molecules.

Keywords

References

  1. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA (2018) Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett Appl Microbiol 66:416–426. https://doi.org/10.1111/lam.12867 [DOI: 10.1111/lam.12867]
  2. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, Khan NA (2016) Identification and characterization of antibacterial compound (s) of cockroaches (Periplaneta americana). Appl Microbiol Biotechnol 101:253–286. https://doi.org/10.1007/s00253-016-7872-2 [DOI: 10.1007/s00253-016-7872-2]
  3. Battison AL, Summerfield R, Patrzykat A (2008) Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish Shellfish Immun 25:181–187. https://doi.org/10.1016/j.fsi.2008.04.005 [DOI: 10.1016/j.fsi.2008.04.005]
  4. Benhabiles MS, Salah R, Lounic H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food hydrocoll 29:48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013 [DOI: 10.1016/j.foodhyd.2012.02.013]
  5. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516. https://doi.org/10.1039/B514294F [DOI: 10.1039/B514294F]
  6. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:S14459. https://doi.org/10.4137/PMC.S14459 [DOI: 10.4137/PMC.S14459]
  7. Fauci AS, Touchette NA, Folkers GK (2005) Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg Infect Dis 11:519–525. https://doi.org/10.3201/eid1104.041167 [DOI: 10.3201/eid1104.041167]
  8. Fratini F, Cilia G, Turchi B, Felicioli A (2017) Insects, arachnids and centipedes venom: a powerful weapon against bacteria. A literature review. Toxicon 130:91–103. https://doi.org/10.1016/j.toxicon.2017.02.020 [DOI: 10.1016/j.toxicon.2017.02.020]
  9. Haddad PS, Azar GA, Groom S, Boivin M (2005) Natural health products, modulation of immune function and prevention of chronic diseases. Evid Based Complement Alternat Med 2:513–520. https://doi.org/10.1093/ecam/neh125 [DOI: 10.1093/ecam/neh125]
  10. Haeberli S, Kuhn-Nentwig L, Schaller J, Nentwig W (2000) Characterisation of antibacterial activity of peptides isolated from the venom of the spider Cupiennius salei (Araneae: Ctenidae). Toxicon 38:373–380. https://doi.org/10.1016/S0041-0101(99)00167-1 [DOI: 10.1016/S0041-0101(99)00167-1]
  11. Haug T, Stensvåg K, Olsen ØM, Sandsdalen E, Styrvold OB (2004) Antibacterial activities in various tissues of the horse mussel, Modiolus modiolus. J Invertebr Pathol 85:112–119. https://doi.org/10.1016/j.jip.2004.02.006 [DOI: 10.1016/j.jip.2004.02.006]
  12. HemaIswarya S, Doble M (2006) Potential synergism of natural products in the treatment of cancer. Phytother Res 20:239–249. https://doi.org/10.1002/ptr.1841 [DOI: 10.1002/ptr.1841]
  13. Jayasankar V, Subramoniam T (1999) Antibacterial activity of seminal plasma of the mud crab Scylla serrata (Forskal). J Exp Mar Biol Ecol 236:253–259. https://doi.org/10.1016/S0022-0981(98)00203-2 [DOI: 10.1016/S0022-0981(98)00203-2]
  14. Jeyamogan S, Khan NA, Siddiqui R (2017) Animals living in polluted environments are a potential source of anti-tumor molecule(s). Cancer Chemother Pharmacol 80:919–924. https://doi.org/10.1007/s00280-017-3410-x [DOI: 10.1007/s00280-017-3410-x]
  15. Jozefiak A, Engberg RM (2017) Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J Anim Feed Sci 26:87–99. https://doi.org/10.22358/jafs/69998/2017 [DOI: 10.22358/jafs/69998/2017]
  16. Khan NA, Osman K, Goldsworthy G (2008) Lysates of Locusta migratoria brain exhibit potent broad spectrum antibacterial activity. J Antimicrob Chemother 62:634–635. https://doi.org/10.1093/jac/dkn239 [DOI: 10.1093/jac/dkn239]
  17. Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, Ahn MY, Jeong M, Kang DC, Lee IH, Hwang JS (2013) Antimicrobial activity of the synthetic peptide scolopendrasin II from the centipede Scolopendra subspinipes mutilans. J Microbiol Biotechnol 23:1381–1385. https://doi.org/10.4014/jmb.1306.06013 [DOI: 10.4014/jmb.1306.06013]
  18. Levy SB, Marshall B (2004) Antibacterial resistance world-wide: causes, challenges and responses. Nat Med 10:S122. https://doi.org/10.1038/nm1145 [DOI: 10.1038/nm1145]
  19. Mohamed AA, Elmogy M, Dorrah MA, Yousef HA, Bassal TT (2013) Antibacterial activity of lysozyme in the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Eur J Entomol 110:559. http://www.eje.cz/pdfs/110/4/559
  20. Morens DM, Fauci AS (2013) Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 9:1003467. https://doi.org/10.1371/journal.ppat.1003467 [DOI: 10.1371/journal.ppat.1003467]
  21. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599. https://doi.org/10.1021/jm0704090 [DOI: 10.1021/jm0704090]
  22. Okada M, Natori S (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J 211:727–734. https://doi.org/10.1042/bj2110727 [DOI: 10.1042/bj2110727]
  23. Okada M, Natori S (1985) Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260:7174–7177. https://doi.org/10.1016/S0021-9258(17)39590-X [DOI: 10.1016/S0021-9258(17)39590-X]
  24. Pemberton RW (1999) Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol 65:207–216. https://doi.org/10.1016/S0378-8741(98)00209-8 [DOI: 10.1016/S0378-8741(98)00209-8]
  25. Sagheer M, Siddiqui R, Iqbal J, Khan NA (2014) Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities. Pathog Glob Health 108:129–136. https://doi.org/10.1179/2047773214Y.0000000132 [DOI: 10.1179/2047773214Y.0000000132]
  26. Sheikh MA, Rathore DS, Gohel SD, Singh SP (2018) Marine actinobacteria associated with the invertebrate hosts: a rich source of bioactive compounds: a review. J Cell Tissue Res 18:6361–6374
  27. Shu YZ (1998) Recent natural products-based drug development: a pharmaceutical industry perspective. J Nat Prod 61:1053–1071. https://doi.org/10.1021/np9800102 [DOI: 10.1021/np9800102]
  28. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3 [DOI: 10.1016/S1473-3099(17)30753-3]
  29. Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238. https://doi.org/10.1016/S1359-6446(97)01167-7 [DOI: 10.1016/S1359-6446(97)01167-7]
  30. World Health Organization (2018) The top 10 causes of death. [Accessed]
  31. Wu Q, Patocka J, Kuca K (2018) Insect antimicrobial peptides, a mini review. Toxins 10:461. https://doi.org/10.3390/toxins10110461 [DOI: 10.3390/toxins10110461]

MeSH Term

Animals
Anti-Bacterial Agents
Escherichia coli
Invertebrates
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0activityselectedantibacterialMRSA90%bacteriainvertebratescoliK1showedexhibitedresistantantimicrobialspeciessourcelysateslobstermudbacteriostaticEextractsAntibacterialevolutionmultiple-drugcontributingglobalcrisishencedrivingussearchnovelsAmonganimalsrepresent80%knownsuggestingwidedistributionDespiteubiquitousplentifulnaturelargelyunexploredpotentialantibacterialsstudybroadrangeterrestrialmarineenvironmentstestedmethicillin-resistantStaphylococcusaereusneuropathogenicEscherichiaCockroachescentipedestarantulasprawnscrabsexhibitingbactericidaleffectsred-headedcentipede'shemolymph50%respectivelyTarantula'sbodyGuttigerprawncrabextractgrowthinhibitoryOverallresultsuntappedbroad-spectrumsuggestpresencebiologicallyactivemoleculesinvertebrateDrugInsectsInvertebrates

Similar Articles

Cited By (1)