Neuroimaging of the Syllable Repetition Task in Children With Residual Speech Sound Disorder.

Caroline Spencer, Jennifer Vannest, Edwin Maas, Jonathan L Preston, Erin Redle, Thomas Maloney, Suzanne Boyce
Author Information
  1. Caroline Spencer: Department of Communication Sciences and Disorders, University of Cincinnati, OH.
  2. Jennifer Vannest: Department of Communication Sciences and Disorders, University of Cincinnati, OH.
  3. Edwin Maas: Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA.
  4. Jonathan L Preston: Department of Communication Sciences and Disorders, Syracuse University, NY.
  5. Erin Redle: Department of Communication Sciences and Disorders, University of Cincinnati, OH.
  6. Thomas Maloney: Cincinnati Children's Hospital Medical Center, OH.
  7. Suzanne Boyce: Department of Communication Sciences and Disorders, University of Cincinnati, OH.

Abstract

Purpose This study investigated phonological and speech motor neural networks in children with residual speech sound disorder (RSSD) during an overt Syllable Repetition Task (SRT). Method Sixteen children with RSSD with /ɹ/ errors (6F [female]; ages 8;0-12;6 [years;months]) and 16 children with typically developing speech (TD; 8F; ages 8;5-13;7) completed a functional magnetic resonance imaging experiment. Children performed the SRT ("SRT-Early Sounds") with the phonemes /b, d, m, n, ɑ/ and an adapted version ("SRT-Late Sounds") with the phonemes /ɹ, s, l, tʃ, ɑ/. We compared the functional activation and transcribed production accuracy of the RSSD and TD groups during both conditions. Expected errors were not scored as inaccurate. Results No between-group or within-group differences in repetition accuracy were found on the SRT-Early Sounds or SRT-Late Sounds tasks at any syllable sequence length. On a first-level analysis of the tasks, the TD group showed expected patterns of activation for both the SRT-Early Sounds and SRT-Late Sounds, including activation in the left primary motor cortex, left premotor cortex, bilateral anterior cingulate, bilateral primary auditory cortex, bilateral superior temporal gyrus, and bilateral insula. The RSSD group showed similar activation when correcting for multiple comparisons. In further exploratory analyses, we observed the following subthreshold patterns: (a) On the SRT-Early Sounds, greater activation was found in the left premotor cortex for the RSSD group, while greater activation was found in the left cerebellum for the TD group; (b) on the SRT-Late Sounds, a small area of greater activation was found in the right cerebellum for the RSSD group. No within-group functional differences were observed (SRT-Early Sounds vs. SRT-Late Sounds) for either group. Conclusions Performance was similar between groups, and likewise, we found that functional activation did not differ. Observed functional differences in previous studies may reflect differences in task performance, rather than fundamental differences in neural mechanisms for syllable repetition.

References

  1. Top Lang Disord. 2011;31(2):112-127 [PMID: 22844175]
  2. Trends Cogn Sci. 2000 Apr;4(4):131-138 [PMID: 10740277]
  3. Neuroimage. 2009 Jan 1;44(1):83-98 [PMID: 18501637]
  4. Perspect ASHA Spec Interest Groups. 2019 Dec;4(6):1644-1652 [PMID: 32524032]
  5. Trends Neurosci. 2008 Jun;31(6):265-72 [PMID: 18471906]
  6. Int J Speech Lang Pathol. 2018 Aug;20(4):422-433 [PMID: 28306339]
  7. Neurosci Biobehav Rev. 2012 Jan;36(1):439-58 [PMID: 21827785]
  8. Science. 2002 May 24;296(5572):1476-9 [PMID: 12029136]
  9. Dev Psychobiol. 2018 Nov;60(7):814-824 [PMID: 30101474]
  10. Magn Reson Med. 2004 Feb;51(2):399-402 [PMID: 14755667]
  11. J Speech Lang Hear Res. 2003 Jun;46(3):724-37 [PMID: 14696999]
  12. Brain Struct Funct. 2016 Jul;221(6):3337-45 [PMID: 26411871]
  13. Lang Speech Hear Serv Sch. 2007 Oct;38(4):297-308 [PMID: 17890510]
  14. Neuroscience. 2017 Dec 26;367:211-218 [PMID: 29102664]
  15. Clin Linguist Phon. 2010 Jan;24(4-5):271-82 [PMID: 20345257]
  16. J Commun Disord. 2006 Sep-Oct;39(5):350-65 [PMID: 16887139]
  17. Soc Cogn Affect Neurosci. 2009 Dec;4(4):423-8 [PMID: 20035017]
  18. Neuroimage. 2014 May 15;92:381-97 [PMID: 24530839]
  19. Neuron. 2011 Feb 10;69(3):407-22 [PMID: 21315253]
  20. J Speech Lang Hear Res. 2012 Aug;55(4):1068-82 [PMID: 22232410]
  21. Int J Lang Commun Disord. 2004 Apr-Jun;39(2):245-56 [PMID: 15204454]
  22. Clin Linguist Phon. 2010 Oct;24(10):795-824 [PMID: 20831378]
  23. Am J Speech Lang Pathol. 2003 Nov;12(4):463-71 [PMID: 14658998]
  24. Magn Reson Med. 1990 Jul;15(1):152-7 [PMID: 2374495]
  25. Memory. 1994 Jun;2(2):103-27 [PMID: 7584287]
  26. Med Image Anal. 2001 Jun;5(2):143-56 [PMID: 11516708]
  27. Top Lang Disord. 2013 Jul;33(3):255-267 [PMID: 25419033]
  28. Neuroimage. 2004 Apr;21(4):1732-47 [PMID: 15050594]
  29. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  30. Brain Res. 2015 Feb 9;1597:47-56 [PMID: 25481413]
  31. Psychosom Med. 2015 Feb-Mar;77(2):114-25 [PMID: 25647751]
  32. Lang Speech Hear Serv Sch. 2010 Jul;41(3):277-88 [PMID: 20421612]
  33. J Speech Lang Hear Res. 1999 Apr;42(2):382-97 [PMID: 10229454]
  34. Clin Linguist Phon. 2009 Apr;23(4):301-18 [PMID: 19382016]
  35. Am J Speech Lang Pathol. 2018 Nov 21;27(4):1546-1571 [PMID: 30177993]
  36. Neuroimage. 2001 Oct;14(4):837-43 [PMID: 11554802]
  37. J Speech Lang Hear Res. 2009 Oct;52(5):1189-212 [PMID: 19635944]
  38. Neuropsychologia. 2020 Feb 17;138:107312 [PMID: 31917203]
  39. Dev Sci. 2010 May;13(3):521-532 [PMID: 20443972]
  40. Clin Linguist Phon. 2019;33(4):334-348 [PMID: 30199271]
  41. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  42. J Pediatr. 2018 Jul;198:234-239.e1 [PMID: 29705112]
  43. Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1293-322 [PMID: 11545704]
  44. Brain Lang. 2005 Apr;93(1):20-31 [PMID: 15766765]
  45. Biomed Res Int. 2015;2015:683279 [PMID: 26557688]
  46. J Cogn Neurosci. 2001 Jul 1;13(5):687-97 [PMID: 11506664]
  47. Brain Lang. 2014 Jan;128(1):25-33 [PMID: 24342151]
  48. J Speech Lang Hear Res. 1998 Oct;41(5):1136-46 [PMID: 9771635]
  49. Nat Rev Neurosci. 2007 May;8(5):393-402 [PMID: 17431404]
  50. J Fluency Disord. 2014 Sep;41:32-46 [PMID: 25173455]
  51. NCHS Data Brief. 2015 Jun;(205):1-8 [PMID: 26079397]
  52. Brain Lang. 2011 Oct;119(1):42-9 [PMID: 21458852]
  53. Neuroimage. 2006 Aug 15;32(2):821-41 [PMID: 16730195]
  54. J Commun Disord. 2013 Jan-Feb;46(1):53-69 [PMID: 23102668]
  55. Semin Speech Lang. 2015 Nov;36(4):283-94 [PMID: 26458203]
  56. J Speech Hear Res. 1995 Apr;38(2):446-62 [PMID: 7596110]
  57. Cereb Cortex. 2005 Mar;15(3):275-90 [PMID: 15297366]

Grants

  1. F31 DC017654/NIDCD NIH HHS
  2. R01 DC013668/NIDCD NIH HHS

MeSH Term

Apraxias
Brain Mapping
Child
Female
Humans
Language Development Disorders
Magnetic Resonance Imaging
Neuroimaging
Speech
Speech Perception
Speech Sound Disorder

Word Cloud

Created with Highcharts 10.0.0activationSoundsRSSDgroupfunctionaldifferencesfoundTDSRT-EarlySRT-LateleftcortexbilateralspeechchildrengreatermotorneuralSyllableRepetitionTaskSRTerrorsages8ChildrenSounds"phonemesɑ/accuracygroupswithin-grouprepetitiontaskssyllableshowedprimarypremotorsimilarobservedcerebellumPurposestudyinvestigatedphonologicalnetworksresidualsounddisorderovertMethodSixteen/ɹ/6F[female]0-126[yearsmonths]16typicallydeveloping8F5-137completedmagneticresonanceimagingexperimentperformed"SRT-Early/bdmnadaptedversion"SRT-LateslcomparedtranscribedproductionconditionsExpectedscoredinaccurateResultsbetween-groupsequencelengthfirst-levelanalysisexpectedpatternsincludinganteriorcingulateauditorysuperiortemporalgyrusinsulacorrectingmultiplecomparisonsexploratoryanalysesfollowingsubthresholdpatterns:bsmallarearightvseitherConclusionsPerformancelikewisedifferObservedpreviousstudiesmayreflecttaskperformanceratherfundamentalmechanismsNeuroimagingResidualSpeechSoundDisorder

Similar Articles

Cited By