Abacus-based mental calculation (AMC) training may improve mathematics-related abilities and transfer to other cognitive domains. Thus, it was hypothesized that inductive reasoning abilities can be improved by AMC training given the overlapping cognitive processes and neural correlates between AMC and inductive reasoning. The aim of the current study was to examine the underlying neurobiological mechanisms of this possible adaption by resting-state functional magnetic resonance imaging (rs-fMRI). Sixty-three children were randomly assigned to either the AMC-trained or the nontrained group. The AMC-trained group was required to perform abacus training for 2 hours per week for 5 years whereas the nontrained group was not required to perform any abacus training. Each participant's rs-fMRI data were collected after abacus training, and regional homogeneity (ReHo) analysis was performed to determine the neural activity differences between groups. The participants' posttraining mathematical ability, intelligence quotients, and inductive reasoning ability were recorded and evaluated. The results revealed that AMC-trained children exhibited a significantly higher mathematical ability and inductive reasoning performance and higher ReHo in the rostrolateral prefrontal cortex (RLPFC) compared to the nontrained group. In particular, the increased ReHo in the RLPFC was found to be positively correlated with improved inductive reasoning performance. Our findings suggest that rs-fMRI may reflect the modulation of training in task-related networks.
Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven progressive matrices test. Psychological Review, 97, 404-431. https://doi.org/10.1037/0033-295x.97.3.404
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1-22. https://doi.org/10.1037/h0046743
Chen, F., Hu, Z., Zhao, X., Wang, R., Yang, Z., Wang, X., & Tang, X. (2006). Neural correlates of serial abacus mental calculation in children: A functional MRI study. Neuroscience Letters, 403, 46-51. https://doi.org/10.1016/j.neulet.2006.04.041
Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168-186. https://doi.org/10.3758/BF03331976
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 1136-1149. https://doi.org/10.1006/nimg.2001.0922
Christoff, K., Ream, J. M., & Gabrieli, J. D. E. (2004). Neural basis of spontaneous thought processes. Cortex, 40(4-5), 623-630. https://doi.org/10.1016/s0010-9452(08)70158-8
Crone, E. A., Wendelken, C., van Leijenhorst, L., Honomichl, R. D., Christoff, K., & Bunge, S. A. (2009). Neurocognitive development of relational reasoning. Developmental Science, 12, 55-66. https://doi.org/10.1111/j.1467-7687.2008.00743.x
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510-1512. https://doi.org/10.1126/science.1155466
Dong, S., Wang, C., Xie, Y., Hu, Y., Weng, J., & Chen, F. (2016). The impact of abacus training on working memory and underlying neural correlates in young adults. Neuroscience, 332, 181-190. https://doi.org/10.1016/j.neuroscience.2016.06.051
Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141(1), 134-149. https://doi.org/10.1037/a0024427
Girelli, L., Semenza, C., & Delazer, M. (2004). Inductive reasoning and implicit memory: Evidence from intact and impaired memory systems. Neuropsychologia, 42(7), 926-938. https://doi.org/10.1016/j.neuropsychologia.2003.11.016
Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). HRT 1-4 - Heidelberger Rechentest - Erfassung Mathematischer Basiskompetenzen im Grundschulalter. Gottingen, Germany: Hogrege. (in German).
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., & Shibasaki, H. (2003). Neural correlates underlying mental calculation in abacus experts: A functional magnetic resonance imaging study. NeuroImage, 19, 296-307. https://doi.org/10.1016/s1053-8119(03)00050-8
Hatano, G., Miyake, Y., & Binks, M. G. (1977). Performance of expert abacus operators. Cognition, 5(1), 47-55. https://doi.org/10.1016/0010-0277(77)90016-6
Horowitz-kraus, T., Difrancesco, M., Kay, B., Wang, Y., & Holland, S. K. (2015). Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties. NeuroImage: Clinical, 8, 619-630. https://doi.org/10.1016/j.nicl.2015.06.010
Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human Brain Mapping, 32, 10-21. https://doi.org/10.1002/hbm.20996
Irwing, P., Hamza, A., Khaleefa, O., & Lynn, R. (2008). Effects of Abacus training on the intelligence of Sudanese children. Personality and Individual Differences, 45, 694-696. https://doi.org/10.1016/j.paid.2008.06.011
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108, 10081-10086. https://doi.org/10.1073/pnas.1103228108
Jia, X., Liang, P., Lu, J., Yang, Y., Zhong, N., & Li, K. (2011). Common and dissociable neural correlates associated with component processes of inductive reasoning. NeuroImage, 56, 2292-2299. https://doi.org/10.1016/j.neuroimage.2011.03.020
Jia, X., Liang, P., Shi, L., Wang, D., & Li, K. (2015). Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model. Neuropsychologia, 66, 67-74. https://doi.org/10.1016/j.neuropsychologia.2014.10.015
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317-324. https://doi.org/10.1016/j.tics.2010.05.002
Li, F., Cao, B., Luo, Y., Lei, Y., & Li, H. (2013). Functional imaging of brain responses to different outcomes of hypothesis testing: Revealed in a category induction task. NeuroImage, 66, 368-375. https://doi.org/10.1016/j.neuroimage.2012.10.031
Li, Y., Hu, Y., Zhao, M., Wang, Y., Huang, J., & Chen, F. (2013). The neural pathway underlying a numerical working memory task in abacus-trained children and associated functional connectivity in the resting brain. Brain Research, 1539, 24-33. https://doi.org/10.1016/j.brainres.2013.09.030
Liang, P., Jia, X., Taatgeen, N. A., Zhong, N., & Li, K. (2014). Different strategies in solving series completion inductive reasoning problems: An fMRI and computational study. International Journal of Psychophysiology, 93, 253-260. https://doi.org/10.1016/j.ijpsycho.2014.05.006
Liang, P., Jia, X., Taatgen, N. A., Borst, J. P., & Li, K. (2016). Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model. Scientific Reports, 6, 25976. https://doi.org/10.1038/srep25976
Na, K. S., Lee, S., Park, J. H., Jung, H. Y., & Ryu, J. H. (2015). Association between abacus training and improvement in response inhibition: A case-control study. Clinical Psychopharmacology and Neuroscience, 13, 163-167. https://doi.org/10.9758/cpn.2015.13.2.163
Schlaffke, L., Schweizer, L., Ruther, N. N., Luerding, R., Tegenthoff, M., Bellebaum, C., & Schmidt-Wilcke, T. (2017). Dynamic changes of resting state connectivity related to the acquisition of a lexico-semantic skill. NeuroImage, 146, 429-437. https://doi.org/10.1016/j.neuroimage.2016.08.065
Simon, H., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534-546. https://doi.org/10.1037/h0043901
Stigler, J. W. (1984). “Mental abacus”: The effect of abacus training on Chinese children's mental calculation. Cognitive Psychology, 16(2), 145-176. https://doi.org/10.1016/0010-0285(84)90006-9
Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., … Honda, M. (2012). Abacus in the brain: A longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3, 315. https://doi.org/10.3389/fpsyg.2012.00315
Wang, C., Geng, F., Yao, Y., Weng, J., Hu, Y., & Chen, F. (2015). Abacus training affects math and task switching abilities and modulates their relationships in Chinese children. PLoS One, 10, e0139930. https://doi.org/10.1371/journal.pone.0139930
Wang, C., Weng, J., Yao, Y., Dong, S., Liu, Y., & Chen, F. (2017). Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Human Brain Mapping, 38, 5234-5249. https://doi.org/10.1002/hbm.23728
Wang, C., Xu, T., Geng, F., Hu, Y., Wang, Y., Liu, H., & Chen, F. (2019). Training on abacus-based mental calculation enhances visuospatial working memory in children. Journal of Neuroscience, 39, 6439-6448. https://doi.org/10.1523/JNEUROSCI.3195-18.2019
Weng, J., Xie, Y., Wang, C., & Chen, F. (2017). The effects of long-term abacus training on topological properties of brain functional networks. Scientific Reports, 7, 8862. https://doi.org/10.1038/s41598-017-08955-2
Wu, H. R., & Li, L. (2006). Norm establishment for Chinese rating scale of pupil's mathematics abilities. Chinese Journal of Clinical Rehabilitation, 10(30), 168-171.(in Chinese).
Wu, T. H., Chen, C. L., Huang, Y. H., Liu, R. S., Hsieh, J. C., & Lee, J. J. S. (2009). Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: A PET study. European Journal of Nuclear Medicine and Molecular Imaging, 36, 436-445. https://doi.org/10.1007/s00259-008-0949-0
Xiao, F., Li, P., Long, C., Lei, Y., & Li, H. (2014). Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: An fMRI study. Biological Psychology, 101, 61-68. https://doi.org/10.1016/j.biopsycho.2014.06.005
Xie, Y., Weng, J., Wang, C., Xu, T., Peng, X., & Chen, F. (2018). The impact of long-term abacus training on modular properties of functional brain network. NeuroImage, 183, 811-817. https://doi.org/10.1016/j.neuroimage.2018.08.057
Yan, C., Wang, X., Zuo, X., & Zang, Y. (2016). DPABI: Data Processing & Analysis for (resting-state) Brain Imaging. Neuroinformatics, 14, 339-351. https://doi.org/10.1007/s12021-016-9299-4
Yang, Y., Liang, P., Lu, S., Li, K., & Zhong, N. (2009). The role of the DLPFC in inductive reasoning of MCI patients and normal aging: An fMRI study. Science China Life Sciences, 52, 789-795. https://doi.org/10.1007/s11427-009-0089-1
Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22, 394-400. https://doi.org/10.1016/j.neuroimage.2003.12.030
Zhang, H., & Wang, X. (1985). The Chinese Version of the Raven's Standard Progressive Matrices. Beijing: Beijing Normal University.
Zhong, N., Liang, P., Qin, Y., Lu, S., Yang, Y., & Li, K. (2011). Neural substrates of data-driven scientific discovery: An fMRI study during performance of number series completion task. Science China Life Sciences, 54, 466-473. https://doi.org/10.1007/s11427-011-4166-x
Zhou, H., Geng, F., Wang, Y., Wang, C., Hu, Y., & Chen, F. (2019). Transfer effects of abacus training on transient and sustained brain activation in the frontal-parietal network. Neuroscience, 408, 135-146. https://doi.org/10.1016/j.neuroscience.2019.04.001
Grants
2016000021223TD07/Beijing Nova Program
17ZDA323/National Social Science Foundation
31270026/National Natural Science Foundation of China
62076169/National Natural Science Foundation of China
2020YFC2007300/National Key Research and Development Project of China
2020YFC2007302/National Key Research and Development Project of China
/the Beijing Brain Initiative of Beijing Municipal Science & Technology Commission, and Academy for Multidisciplinary Studies, Capital Normal University