Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis.

Tomer Illouz, Raneen Nicola, Linoy Ben-Shushan, Ravit Madar, Arya Biragyn, Eitan Okun
Author Information
  1. Tomer Illouz: The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel. ORCID
  2. Raneen Nicola: The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
  3. Linoy Ben-Shushan: The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel. ORCID
  4. Ravit Madar: The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
  5. Arya Biragyn: Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA.
  6. Eitan Okun: The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel. eitan.okun@biu.ac.il.

Abstract

Maternal antibodies (MAbs) protect against infections in immunologically-immature neonates. Maternally transferred immunity may also be harnessed to target diseases associated with endogenous protein misfolding and aggregation, such as Alzheimer's disease (AD) and AD-pathology in Down syndrome (DS). While familial early-onset AD (fEOAD) is associated with autosomal dominant mutations in the APP, PSEN1,2 genes, promoting cerebral Amyloid-β (Aβ) deposition, DS features a life-long overexpression of the APP and DYRK1A genes, leading to a cognitive decline mediated by Aβ overproduction and tau hyperphosphorylation. Although no prenatal screening for fEOAD-related mutations is in clinical practice, DS can be diagnosed in utero. We hypothesized that anti-Aβ MAbs might promote the removal of early Aβ accumulation in the central nervous system of human APP-expressing mice. To this end, a DNA-vaccine expressing Aβ was delivered to wild-type female mice, followed by mating with 5xFAD males, which exhibit early Aβ plaque formation. MAbs reduce the offspring's cortical Aβ levels 4 months after antibodies were undetectable, along with alleviating short-term memory deficits. MAbs elicit a long-term shift in microglial phenotype in a mechanism involving activation of the FcγR1/Syk/Cofilin pathway. These data suggest that maternal immunization can alleviate cognitive decline mediated by early Aβ deposition, as occurs in EOAD and DS.

References

  1. Langel, S. N., Otero, C. E., Martinez, D. R. & Permar, S. R. Maternal gatekeepers: How maternal antibody Fc characteristics influence passive transfer and infant protection. PLoS Pathog. 16, e1008303 (2020). [PMID: 32214394]
  2. Niewiesk, S. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front. Immunol. 5, 446 (2014). [PMID: 25278941]
  3. Fu, C. et al. Placental antibody transfer efficiency and maternal levels: specific for measles, coxsackievirus A16, enterovirus 71, poliomyelitis I-III and HIV-1 antibodies. Sci. Rep. 6, 38874 (2016). [PMID: 27934956]
  4. Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J. Immunol. 157, 3317–3322 (1996). [PMID: 8871627]
  5. Brambell, F. W. The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet 2, 1087–1093 (1966). [PMID: 4162525]
  6. Simister, N. E. & Rees, A. R. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur. J. Immunol. 15, 733–738 (1985). [PMID: 2988974]
  7. ACOG. ACOG Committee Opinion No. 741: Maternal Immunization. Obstet. Gynecol. 131, e214–e217 (2018). [DOI: 10.1097/AOG.0000000000002662]
  8. Munoz, F. M. & Jamieson, D. J. Maternal immunization. Obstet. Gynecol. 133, 739–753 (2019). [PMID: 30913173]
  9. Mendez, M. F. Early-onset Alzheimer disease. Neurologic Clin. 35, 263–281 (2017). [DOI: 10.1016/j.ncl.2017.01.005]
  10. Mendez, M. F. Early-onset Alzheimer disease and its variants. Continuum 25, 34–51 (2019). [PMID: 30707186]
  11. Moehlmann, T. et al. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Abeta 42 production. Proc. Natl Acad. Sci. USA 99, 8025–8030 (2002). [PMID: 12048239]
  12. Presson, A. P. et al. Current estimate of Down Syndrome population prevalence in the United States. J. Pediatr. 163, 1163–1168 (2013). [PMID: 23885965]
  13. Carfi, A. et al. Characteristics of adults with down syndrome: prevalence of age-related conditions. Front Med. (Lausanne) 1, 51 (2014).
  14. Choong, X. Y., Tosh, J. L., Pulford, L. J. & Fisher, E. M. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav. Neurosci. 9, 268 (2015). [PMID: 26528151]
  15. Wiseman, F. K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16, 564–574 (2015). [PMID: 26243569]
  16. Burger, P. C. & Vogel, F. S. The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am. J. Pathol. 73, 457–476 (1973). [PMID: 4271339]
  17. Alhajraf, F., Ness, D., Hye, A. & Strydom, A. Plasma amyloid and tau as dementia biomarkers in Down syndrome: systematic review and meta-analyses. Dev. Neurobiol. https://doi.org/10.1002/dneu.22715 (2019).
  18. Heneka, M. T. Microglia take centre stage in neurodegenerative disease. Nat. Rev. Immunol. 19, 79–80 (2019). [PMID: 30610221]
  19. Raha-Chowdhury, R. et al. Erythromyeloid-derived TREM2: a major determinant of Alzheimer’s disease pathology in down syndrome. J. Alzheimers Dis. 61, 1143–1162 (2018). [PMID: 29278889]
  20. Tejera, D. & Heneka, M. T. Microglia in neurodegenerative disorders. Methods Mol. Biol. 2034, 57–67 (2019). [PMID: 31392677]
  21. Korbel, J. O. et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc. Natl Acad. Sci. USA 106, 12031–12036 (2009). [PMID: 19597142]
  22. Wiseman, F. K. et al. Trisomy of human chromosome 21 enhances amyloid-beta deposition independently of an extra copy of APP. Brain 141, 2457–2474 (2018). [PMID: 29945247]
  23. Chan, S. L., Furukawa, K. & Mattson, M. P. Presenilins and APP in neuritic and synaptic plasticity: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med 2, 167–196 (2002). [PMID: 12428810]
  24. Barone, E., Head, E., Butterfield, D. A. & Perluigi, M. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology. Free Radic. Biol. Med. 111, 262–269 (2017). [PMID: 27838436]
  25. Butterfield, D. A. & Perluigi, M. Down syndrome: from development to adult life to Alzheimer disease. Free Radic. Biol. Med. 114, 1–2 (2018). [PMID: 29079527]
  26. Tramutola, A. et al. Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl. Neurodegener. 7, 28 (2018). [PMID: 30410750]
  27. Olkhanud, P. B. et al. DNA immunization with HBsAg-based particles expressing a B cell epitope of amyloid beta-peptide attenuates disease progression and prolongs survival in a mouse model of Alzheimer’s disease. Vaccine 30, 1650–1658 (2012). [PMID: 22248819]
  28. Gupta, M., Dhanasekaran, A. R. & Gardiner, K. J. Mouse models of Down syndrome: gene content and consequences. Mamm. Genome 27, 538–555 (2016). [PMID: 27538963]
  29. Illouz, T., Madar, R., Biragyn, A. & Okun, E. Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse model. Brain Behav. Immun. 75, 163–180 (2019). [PMID: 30389461]
  30. Rueda, N., Florez, J. & Martinez-Cue, C. Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plasticity 2012, 584071 (2012). [PMID: 22685678]
  31. Atwood, C. S. et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826 (1998). [PMID: 9582309]
  32. Jankowsky, J. L. et al. Rodent A beta modulates the solubility and distribution of amyloid deposits in transgenic mice. J. Biol. Chem. 282, 22707–22720 (2007). [PMID: 17556372]
  33. Gribble, S. M. et al. Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PloS ONE 8, e60482 (2013). [PMID: 23596509]
  34. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 e1217 (2017). [DOI: 10.1016/j.cell.2017.05.018]
  35. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 e569 (2017). [PMID: 28930663]
  36. Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006). [PMID: 17021169]
  37. Lueptow, L. M. Novel object recognition test for the investigation of learning and memory in mice. J. Vis. Exp. https://doi.org/10.3791/55718 (2017).
  38. Seibenhener, M. L. & Wooten, M. C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. e52434, https://doi.org/10.3791/52434 (2015).
  39. Shepherd, J. K., Grewal, S. S., Fletcher, A., Bill, D. J. & Dourish, C. T. Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl.) 116, 56–64 (1994). [DOI: 10.1007/BF02244871]
  40. Illouz, T., Madar, R., Griffioen, K. & Okun, E. A protocol for quantitative analysis of murine and human amyloid-beta1-40 and 1-42. J. Neurosci. Methods 291, 28–35 (2017). [PMID: 28768163]
  41. Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993). [PMID: 8513491]
  42. Geylis, V. & Steinitz, M. Immunotherapy of Alzheimer’s disease (AD): from murine models to anti-amyloid beta (Abeta) human monoclonal antibodies. Autoimmun. Rev. 5, 33–39 (2006). [PMID: 16338209]
  43. Strohmeyer, R. et al. Microglial responses to amyloid beta peptide opsonization and indomethacin treatment. J. Neuroinflammation 2, 18 (2005). [PMID: 16111494]
  44. Jaumouille, V. et al. Actin cytoskeleton reorganization by Syk regulates Fcgamma receptor responsiveness by increasing its lateral mobility and clustering. Dev. Cell 29, 534–546 (2014). [PMID: 24914558]
  45. Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunological Rev. 268, 25–51 (2015). [DOI: 10.1111/imr.12350]
  46. Latvala, S., Jacobsen, B., Otteneder, M. B., Herrmann, A. & Kronenberg, S. Distribution of FcRn across species and tissues. J. Histochem. Cytochem. 65, 321–333 (2017). [PMID: 28402755]
  47. Gratuze, M., Leyns, C. E. G. & Holtzman, D. M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegeneration 13, 66 (2018). [DOI: 10.1186/s13024-018-0298-9]
  48. Sierksma, A., Escott-Price, V. & De Strooper, B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 370, 61–66 (2020). [PMID: 33004512]
  49. Ulland, T. K. & Colonna, M. TREM2 - a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018). [PMID: 30266932]
  50. Yao, H. et al. Distinct signaling pathways regulate TREM2 phagocytic and NFkappaB antagonistic activities. Front. Cell. Neurosci. 13, 457 (2019). [PMID: 31649511]
  51. Zhong, L. et al. TREM2/DAP12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Front. Aging Neurosci. 9, 204 (2017). [PMID: 28680398]
  52. Kiefer, F. et al. The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol. Cell. Biol. 18, 4209–4220 (1998). [PMID: 9632805]
  53. Corradin, S. B., Mauel, J., Donini, S. D., Quattrocchi, E. & Ricciardi-Castagnoli, P. Inducible nitric oxide synthase activity of cloned murine micro. Glial Cells Glia 7, 255–262 (1993). [PMID: 7681038]
  54. Yamamoto, N. et al. The orally available spleen tyrosine kinase inhibitor 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J. Pharmacol. Exp. Therapeutics 306, 1174–1181 (2003). .
  55. Miller, G. Alzheimer’s research. Stopping Alzheimer’s before it starts. Science 337, 790–792 (2012). [PMID: 22903991]
  56. Morris, J. C. et al. Developing an international network for Alzheimer research: the dominantly inherited Alzheimer. Netw. Clin. Investig. 2, 975–984 (2012). [DOI: 10.4155/cli.12.93]
  57. Reiman, E. M. et al. Alzheimer’s Prevention Initiative: a plan to accelerate the evaluation of presymptomatic treatments. J. Alzheimers Dis. 26, 321–329 (2011). Suppl 3. [PMID: 21971471]
  58. Rosenberg, R. N., Fu, M. & Lambracht-Washington, D. Intradermal active full-length DNA Abeta42 immunization via electroporation leads to high anti-Abeta antibody levels in wild-type mice. J. Neuroimmunol. 322, 15–25 (2018). [PMID: 29958693]
  59. Sardesai, N. Y. & Weiner, D. B. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23, 421–429 (2011). [PMID: 21530212]
  60. Nilaratanakul, V. et al. Germ line IgM is sufficient, but not required, for antibody-mediated alphavirus clearance from the central nervous system. J. Virol. 92, https://doi.org/10.1128/JVI.02081-17 (2018).
  61. Takai, T. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol. 25, 1–18 (2005). [PMID: 15742153]
  62. Song, X., Tanaka, S., Cox, D. & Lee, S. C. Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J. Leukoc. Biol. 75, 1147–1155 (2004). [PMID: 14982949]
  63. Stangel, M. & Compston, A. Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J. Neuroimmunol. 112, 63–71 (2001). [PMID: 11108934]
  64. Tanaka, K. et al. Structural basis for cofilin binding and actin filament disassembly. Nat. Commun. 9, 1860 (2018). [PMID: 29749375]
  65. Kanellos, G. & Frame, M. C. Cellular functions of the ADF/cofilin family at a glance. J. Cell Sci. 129, 3211–3218 (2016). [PMID: 27505888]
  66. Chistiakov, D. A., Killingsworth, M. C., Myasoedova, V. A., Orekhov, A. N. & Bobryshev, Y. V. CD68/macrosialin: not just a histochemical marker. Lab Invest. 97, 4–13 (2017). [PMID: 27869795]
  67. Fu, R., Shen, Q., Xu, P., Luo, J. J. & Tang, Y. Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol. 49, 1422–1434 (2014). [PMID: 24395130]
  68. Xiang, X. et al. TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med. 8, 992–1004 (2016). [PMID: 27402340]
  69. Pyrski, M. et al. HBcAg produced in transgenic tobacco triggers Th1 and Th2 response when intramuscularly delivered. Vaccine 35, 5714–5721 (2017). [PMID: 28917537]
  70. Leger, M. et al. Object recognition test in mice. Nat. Protoc. 8, 2531–2537 (2013). [PMID: 24263092]
  71. Deacon, R. M. J. & Rawlins, J. N. P. T-maze alternation in the rodent. Nat. Protoc. 1, 7–12 (2006). [PMID: 17406205]
  72. Moussaud, S. & Draheim, H. J. A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods 187, 243–253 (2010). [PMID: 20097228]
  73. Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 7, 123 (2006). [DOI: 10.1186/1471-2105-7-123]

MeSH Term

Alzheimer Disease
Alzheimer Vaccines
Amyloid beta-Peptides
Amyloid beta-Protein Precursor
Animals
Antibodies
Behavior, Animal
Brain
Cognition
Disease Models, Animal
Female
Immunization
Male
Memory
Mice, Inbred C57BL
Mice, Transgenic
Microglia
Peptide Fragments
Phagocytosis
Phenotype
Plaque, Amyloid
Receptors, IgG
Signal Transduction
Syk Kinase
Vaccines, DNA
Mice

Chemicals

APP protein, human
Alzheimer Vaccines
Amyloid beta-Peptides
Amyloid beta-Protein Precursor
Antibodies
Fcgr1 protein, mouse
Peptide Fragments
Receptors, IgG
Vaccines, DNA
amyloid beta-protein (1-11)
Syk Kinase
Syk protein, mouse

Word Cloud

Created with Highcharts 10.0.0MAbsDSantibodiesearlyMaternalassociatedADmutationsAPPgenesAmyloid-βdepositioncognitivedeclinemediatedcanmiceprotectinfectionsimmunologically-immatureneonatesMaternallytransferredimmunitymayalsoharnessedtargetdiseasesendogenousproteinmisfoldingaggregationAlzheimer'sdiseaseAD-pathologysyndromefamilialearly-onsetfEOADautosomaldominantPSEN12promotingcerebralfeatureslife-longoverexpressionDYRK1AleadingoverproductiontauhyperphosphorylationAlthoughprenatalscreeningfEOAD-relatedclinicalpracticediagnoseduterohypothesizedanti-AβmightpromoteremovalaccumulationcentralnervoussystemhumanAPP-expressingendDNA-vaccineexpressingdeliveredwild-typefemalefollowedmating5xFADmalesexhibitplaqueformationreduceoffspring's corticallevels4monthsundetectablealongalleviatingshort-termmemorydeficitselicitlong-termshiftmicroglialphenotypemechanisminvolvingactivationFcγR1/Syk/CofilinpathwaydatasuggestmaternalimmunizationalleviateoccursEOADfacilitateclearanceactivatingFc-receptor-Syk-mediatedphagocytosis

Similar Articles

Cited By