Using high-definition transcranial direct current stimulation to investigate the role of the dorsolateral prefrontal cortex in explicit sequence learning.

Hannah K Ballard, Sydney M Eakin, Ted Maldonado, Jessica A Bernard
Author Information
  1. Hannah K Ballard: Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America. ORCID
  2. Sydney M Eakin: Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America.
  3. Ted Maldonado: Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America.
  4. Jessica A Bernard: Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America.

Abstract

Though we have a general understanding of the brain areas involved in motor sequence learning, there is more to discover about the neural mechanisms underlying skill acquisition. Skill acquisition may be subserved, in part, by interactions between the cerebellum and prefrontal cortex through a cerebello-thalamo-prefrontal network. In prior work, we investigated this network by targeting the cerebellum; here, we explored the consequence of stimulating the dorsolateral prefrontal cortex using high-definition transcranial direct current stimulation (HD-tDCS) before administering an explicit motor sequence learning paradigm. Using a mixed within- and between- subjects design, we employed anodal (n = 24) and cathodal (n = 25) HD-tDCS (relative to sham) to temporarily alter brain function and examine effects on skill acquisition. The results indicate that both anodal and cathodal prefrontal stimulation impedes motor sequence learning, relative to sham. These findings suggest an overall negative influence of active prefrontal stimulation on the acquisition of a sequential pattern of finger movements. Collectively, this provides novel insight on the role of the dorsolateral prefrontal cortex in initial skill acquisition, when cognitive processes such as working memory are used. Exploring methods that may improve motor learning is important in developing therapeutic strategies for motor-related diseases and rehabilitation.

References

  1. Brain Stimul. 2018 Sep - Oct;11(5):1033-1043 [PMID: 29936014]
  2. Cereb Cortex. 2015 Nov;25(11):4551-8 [PMID: 25979089]
  3. J Neurosci. 2003 Sep 10;23(23):8432-44 [PMID: 12968006]
  4. Behav Brain Res. 2012 Apr 21;230(1):116-24 [PMID: 22343069]
  5. PLoS One. 2014 Jan 07;9(1):e84338 [PMID: 24409291]
  6. Cereb Cortex. 2010 Apr;20(4):953-65 [PMID: 19684249]
  7. Neuron. 2003 Mar 27;37(6):1013-25 [PMID: 12670429]
  8. J Cogn Neurosci. 2010 Nov;22(11):2663-76 [PMID: 19925191]
  9. J Neurophysiol. 2009 Jun;101(6):3116-25 [PMID: 19357338]
  10. Brain Cogn. 2014 Nov;91:87-94 [PMID: 25265321]
  11. J Cogn Neurosci. 2010 Sep;22(9):1917-30 [PMID: 19803691]
  12. Front Aging Neurosci. 2015 May 08;7:76 [PMID: 26005417]
  13. J Neurophysiol. 2019 Aug 1;122(2):490-499 [PMID: 31166807]
  14. J Cogn Neurosci. 2016 Aug;28(8):1063-89 [PMID: 27054400]
  15. Exp Brain Res. 2012 Jan;216(1):1-10 [PMID: 21989847]
  16. Basic Clin Neurosci. 2019 Jan-Feb;10(1):59-72 [PMID: 31031894]
  17. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):861-8 [PMID: 9448252]
  18. Trends Neurosci. 1999 Oct;22(10):464-71 [PMID: 10481194]
  19. Brain Stimul. 2017 May - Jun;10(3):567-575 [PMID: 28089321]
  20. Neuropsychologia. 2018 Aug;117:156-166 [PMID: 29727626]
  21. Neuroimage. 2011 Aug 15;57(4):1492-8 [PMID: 21672633]
  22. Neuropsychologia. 2000;38(1):1-10 [PMID: 10617287]
  23. Front Neurosci. 2018 Jul 17;12:481 [PMID: 30065625]
  24. Learn Mem. 2002 Nov-Dec;9(6):376-86 [PMID: 12464697]
  25. J Neurosci. 1998 Mar 1;18(5):1827-40 [PMID: 9465007]
  26. Front Hum Neurosci. 2019 Feb 01;13:19 [PMID: 30774590]
  27. Brain Stimul. 2008 Jul;1(3):206-23 [PMID: 20633386]
  28. Neurosci Lett. 2011 Mar 10;491(1):40-3 [PMID: 21215288]
  29. Exp Brain Res. 2019 Apr;237(4):919-925 [PMID: 30661087]
  30. J Neurosci. 2016 Dec 14;36(50):12530-12536 [PMID: 27974612]
  31. Neuroimage. 2015 Aug 15;117:11-9 [PMID: 25987365]
  32. Hum Mov Sci. 2019 Oct;67:102507 [PMID: 31394308]
  33. Neuroscience. 2019 Aug 21;414:77-87 [PMID: 31279047]
  34. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1017-22 [PMID: 11805340]
  35. Cereb Cortex. 2007 May;17(5):1227-34 [PMID: 16855008]
  36. Cereb Cortex. 2004 Feb;14(2):199-208 [PMID: 14704217]
  37. Sci Rep. 2017 Aug 29;7(1):9649 [PMID: 28852114]
  38. Neuroimage. 2012 Mar;60(1):324-31 [PMID: 22227134]
  39. Behav Brain Res. 2012 Mar 1;228(1):107-15 [PMID: 22155489]
  40. Exp Brain Res. 2001 Dec;141(3):269-80 [PMID: 11715072]
  41. Neurobiol Learn Mem. 2002 Nov;78(3):553-64 [PMID: 12559834]
  42. Front Syst Neurosci. 2014 Jan 24;8:2 [PMID: 24478640]
  43. Front Neurosci. 2018 Oct 31;12:787 [PMID: 30429768]
  44. J Physiol. 2000 Sep 15;527 Pt 3:633-9 [PMID: 10990547]
  45. Brain Cogn. 1997 Jul;34(2):218-45 [PMID: 9220087]
  46. Front Hum Neurosci. 2017 Apr 03;11:153 [PMID: 28420970]
  47. PLoS One. 2011;6(9):e24140 [PMID: 21909415]
  48. Behav Brain Res. 2009 Apr 12;199(1):61-75 [PMID: 19061920]
  49. Brain Res Bull. 2006 Oct 16;70(4-6):337-46 [PMID: 17027769]
  50. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  51. J Neurophysiol. 2019 May 1;121(5):1906-1916 [PMID: 30917064]
  52. Psychol Res. 2008 Mar;72(2):138-54 [PMID: 17091260]
  53. Elife. 2017 Feb 07;6: [PMID: 28169833]
  54. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1774-1777 [PMID: 28268671]
  55. J Neurophysiol. 2010 Feb;103(2):942-9 [PMID: 20018839]
  56. Exp Brain Res. 2005 Sep;166(1):23-30 [PMID: 15999258]
  57. J Cogn Neurosci. 2013 Apr;25(4):558-70 [PMID: 23249357]
  58. Front Integr Neurosci. 2019 Jan 08;12:64 [PMID: 30670954]
  59. J Neurosci. 1994 Jun;14(6):3775-90 [PMID: 8207487]
  60. Front Neuroanat. 2012 Aug 10;6:31 [PMID: 22907994]
  61. Brain. 1998 Nov;121 ( Pt 11):2159-73 [PMID: 9827775]
  62. Eur J Neurosci. 2013 Mar;37(5):786-94 [PMID: 23279569]
  63. Cereb Cortex. 2009 Oct;19(10):2485-97 [PMID: 19592571]
  64. Front Neuroanat. 2015 Jul 15;9:89 [PMID: 26236199]
  65. Cerebellum. 2013 Oct;12(5):721-37 [PMID: 23625382]
  66. Brain Stimul. 2016 Mar-Apr;9(2):197-208 [PMID: 26597929]
  67. Annu Rev Neurosci. 2009;32:413-34 [PMID: 19555291]
  68. Clin Neurophysiol. 2017 Apr;128(4):589-603 [PMID: 28231477]
  69. Rev Neurosci. 2019 Nov 26;30(8):821-837 [PMID: 31194694]
  70. J Cogn Neurosci. 1995 Fall;7(4):497-510 [PMID: 23961907]
  71. Brain Stimul. 2015 Jul-Aug;8(4):784-6 [PMID: 25857398]

MeSH Term

Adult
Female
Humans
Learning
Male
Prefrontal Cortex
Transcranial Direct Current Stimulation

Word Cloud

Created with Highcharts 10.0.0prefrontallearningacquisitionmotorsequencecortexstimulationskilldorsolateralbrainmaycerebellumnetworkhigh-definitiontranscranialdirectcurrentHD-tDCSexplicitUsinganodaln=cathodalrelativeshamroleThoughgeneralunderstandingareasinvolveddiscoverneuralmechanismsunderlyingSkillsubservedpartinteractionscerebello-thalamo-prefrontalpriorworkinvestigatedtargetingexploredconsequencestimulatingusingadministeringparadigmmixedwithin-between-subjectsdesignemployed2425temporarilyalterfunctionexamineeffectsresultsindicateimpedesfindingssuggestoverallnegativeinfluenceactivesequentialpatternfingermovementsCollectivelyprovidesnovelinsightinitialcognitiveprocessesworkingmemoryusedExploringmethodsimproveimportantdevelopingtherapeuticstrategiesmotor-relateddiseasesrehabilitationinvestigate

Similar Articles

Cited By