Transcriptome sequencing and analysis for the pigmentation of scale and skin in common carp (Cyprinus carpio).
Yu-Jie Zhao, Jun Xiao, Mei-Di Huangyang, Ran Zhao, Qi Wang, Yan Zhang, Jiong-Tang Li
Author Information
Yu-Jie Zhao: College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China.
Jun Xiao: College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China.
Mei-Di Huangyang: College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China.
Ran Zhao: Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
Qi Wang: Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
Yan Zhang: Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
Jiong-Tang Li: Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China. lijt@cafs.ac.cn. ORCID
BACKGROUND: Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS: We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS: We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.
Zhu D, Ortega CF, Motamedi R, Szewciw L, Vernerey F, Barthelat F (2012) Structure and mechanical performance of a “modern” fish scale. Adv Eng Mater 14(4):B185–B194. https://doi.org/10.1002/adem.201180057
[DOI: 10.1002/adem.201180057]
Sharpe PT (2001) Fish scale development: hair today, teeth and scales yesterday? Curr Biol 11(18):R751–R752. https://doi.org/10.1016/S0960-9822(01)00438-9
[DOI: 10.1016/S0960-9822(01)00438-9]
Schonborner AA, Boivin G, Baud CA (1979) The mineralization processes in teleost fish scales. Cell Tissue Res 202(2):203–212
[DOI: 10.1007/BF00232235]
Nusslein-Volhard C, Singh AP (2017) How fish color their skin: a paradigm for development and evolution of adult patterns: multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in Zebrafish coloration. BioEssays. https://doi.org/10.1002/bies.201600231
[DOI: 10.1002/bies.201600231]
Braasch I, Schartl M, Volff JN (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7:74. https://doi.org/10.1186/1471-2148-7-74
[DOI: 10.1186/1471-2148-7-74]
Haffter P, Odenthal J, Mullins MC, Lin S, Farrell MJ, Vogelsang E, Haas F, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Hopkins N, Nüsslein-Volhard C (1996) Mutations affecting pigmentation and shape of the adult zebrafish. Dev Genes Evol 206(4):260–276. https://doi.org/10.1007/s004270050051
[DOI: 10.1007/s004270050051]
Bar I, Kaddar E, Velan A, David L (2013) Melanocortin receptor 1 and black pigmentation in the Japanese ornamental carp (Cyprinus carpio var. Koi). Front Genet 4:6. https://doi.org/10.3389/fgene.2013.00006
[DOI: 10.3389/fgene.2013.00006]
Li X-M, Song Y-N, Xiao G-B, Zhu B-H, Xu G-C, Sun M-Y, Xiao J, Mahboob S, Al-Ghanim KA, Sun X-W, Li J-T (2015) Gene expression variations of red-white skin coloration in common carp (Cyprinus carpio). Int J Mol Sci 16(9):21310–21329. https://doi.org/10.3390/ijms160921310
[DOI: 10.3390/ijms160921310]
Neave F (1940) Memoirs: on the histology and regeneration of the teleost scale. Q J Microsc Sci 2–81(324):541
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797
[DOI: 10.1373/clinchem.2008.112797]
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G, Zhang Y, Huo L, Zhao Z, Cao D, Lu C, Li C, Zhou Y, Liu Z, Fan Z, Shan G, Li X, Wu S, Song L, Hou G, Jiang Y, Jeney Z, Yu D, Wang L, Shao C, Song L, Sun J, Ji P, Wang J, Li Q, Xu L, Sun F, Feng J, Wang C, Wang S, Wang B, Li Y, Zhu Y, Xue W, Zhao L, Wang J, Gu Y, Lv W, Wu K, Xiao J, Wu J, Zhang Z, Yu J, Sun X (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219. https://doi.org/10.1038/ng.3098
[DOI: 10.1038/ng.3098]
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317
[DOI: 10.1038/nmeth.3317]
Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185. https://doi.org/10.1093/bioinformatics/bts356
[DOI: 10.1093/bioinformatics/bts356]
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. https://doi.org/10.1038/nbt.3122
[DOI: 10.1038/nbt.3122]
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084
[DOI: 10.1038/nprot.2013.084]
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610
[DOI: 10.1093/bioinformatics/bti610]
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016
[DOI: 10.1038/nprot.2012.016]
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106
[DOI: 10.1186/gb-2010-11-10-r106]
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140
[DOI: 10.1093/bioinformatics/btp616]
Chen C, Xia R, Chen H, He Y (2018) TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. https://doi.org/10.1101/289660
[DOI: 10.1101/289660]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607-d613. https://doi.org/10.1093/nar/gky1131
[DOI: 10.1093/nar/gky1131]
Savan R, Igawa D, Sakai M (2003) Cloning, characterization and expression analysis of interleukin-10 from the common carp, Cyprinus carpio L. Eur J Biochem 270(23):4647–4654. https://doi.org/10.1046/j.1432-1033.2003.03854.x
[DOI: 10.1046/j.1432-1033.2003.03854.x]
Wang X, Gan X, Li J, Chen Y, He S (2016) Cyprininae phylogeny revealed independent origins of the Tibetan Plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau. Sci China Life Sci 59(11):1149–1165. https://doi.org/10.1007/s11427-016-0007-7
[DOI: 10.1007/s11427-016-0007-7]
Barron MJ, Brookes SJ, Draper CE, Garrod D, Kirkham J, Shore RC, Dixon MJ (2008) The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. Hum Mol Genet 17(22):3509–3520. https://doi.org/10.1093/hmg/ddn243
[DOI: 10.1093/hmg/ddn243]
Brancati F, Fortugno P, Bottillo I, Lopez M, Josselin E, Boudghene-Stambouli O, Agolini E, Bernardini L, Bellacchio E, Iannicelli M, Rossi A, Dib-Lachachi A, Stuppia L, Palka G, Mundlos S, Stricker S, Kornak U, Zambruno G, Dallapiccola B (2010) Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am J Hum Genet 87(2):265–273. https://doi.org/10.1016/j.ajhg.2010.07.003
[DOI: 10.1016/j.ajhg.2010.07.003]
Whyte MP, McAlister WH, Fallon MD, Pierpont ME, Bijanki VN, Duan S, Otaify GA, Sly WS, Mumm S (2017) Raine syndrome (OMIM #259775), caused by FAM20C mutation, is congenital sclerosing osteomalacia with cerebral calcification (OMIM 259660). J Bone Miner Res 32(4):757–769. https://doi.org/10.1002/jbmr.3034
[DOI: 10.1002/jbmr.3034]
Vogel P, Hansen GM, Read RW, Vance RB, Thiel M, Liu J, Wronski TJ, Smith DD, Jeter-Jones S, Brommage R (2012) Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet Pathol 49(6):998–1017. https://doi.org/10.1177/0300985812453177
[DOI: 10.1177/0300985812453177]
Bolanos A, Hotton D, Ferbus D, Loiodice S, Berdal A, Babajko S (2012) Regulation of calbindin-D(28k) expression by Msx2 in the dental epithelium. J Histochem Cytochem 60(8):603–610. https://doi.org/10.1369/0022155412450641
[DOI: 10.1369/0022155412450641]
Sefc KM, Brown AC, Clotfelter ED (2014) Carotenoid-based coloration in cichlid fishes. Comp Biochem Physiol A 173:42–51. https://doi.org/10.1016/j.cbpa.2014.03.006
[DOI: 10.1016/j.cbpa.2014.03.006]
Nikčević G, Savić T, Kovačević-Grujičić N, Stevanović M (2008) Up-regulation of the SOX3 gene expression by retinoic acid: characterization of the novel promoter-response element and the retinoid receptors involved. J Neurochem 107(5):1206–1215. https://doi.org/10.1111/j.1471-4159.2008.05670.x
[DOI: 10.1111/j.1471-4159.2008.05670.x]
Suzuki R, Miyahara K, Murakami H, Doi T, Lane GJ, Mabuchi Y, Suzuki N, Yamataka A, Akazawa C (2014) Abnormal neural crest innervation in Sox10-Venus mice with all-trans retinoic acid-induced anorectal malformations. Pediatr Surg Int 30(2):189–195. https://doi.org/10.1007/s00383-013-3452-z
[DOI: 10.1007/s00383-013-3452-z]
Bastonini E, Kovacs D, Picardo M (2016) Skin pigmentation and pigmentary disorders: focus on epidermal/dermal cross-talk. Ann Dermatol 28(3):279–289. https://doi.org/10.5021/ad.2016.28.3.279
[DOI: 10.5021/ad.2016.28.3.279]
Kelsh RN (2004) Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17(4):326–336. https://doi.org/10.1111/j.1600-0749.2004.00174.x
[DOI: 10.1111/j.1600-0749.2004.00174.x]
Patel S, Huang Y-W, Reheman A, Pluthero Fred G, Chaturvedi S, Mukovozov Ilya M, Tole S, Liu G-Y, Li L, Durocher Y, Ni H, Kahr Walter HA, Robinson Lisa A (2012) The cell motility modulator Slit2 is a potent inhibitor of platelet function. Circulation 126(11):1385–1395. https://doi.org/10.1161/CIRCULATIONAHA.112.105452
[DOI: 10.1161/CIRCULATIONAHA.112.105452]
Tanno T, Fujiwara A, Sakaguchi K, Tanaka K, Takenaka S, Tsuyama S (2007) Slit3 regulates cell motility through Rac/Cdc42 activation in lipopolysaccharide-stimulated macrophages. FEBS Lett 581(5):1022–1026. https://doi.org/10.1016/j.febslet.2007.02.001
[DOI: 10.1016/j.febslet.2007.02.001]
Meyer-Rochow VB, Royuela M, Fraile B, Paniagua R (2001) Smooth muscle proteins as intracellular components of the chromatophores of the Antarctic fishes Pagothenia borchgrevinki and Trematomus bernacchii (Nototheniidae). Protoplasma 218(1–2):24–30
[DOI: 10.1007/BF01288357]
Mundy Nicholas I, Stapley J, Bennison C, Tucker R, Twyman H, Kim K-W, Burke T, Birkhead Tim R, Andersson S, Slate J (2016) Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol 26(11):1435–1440. https://doi.org/10.1016/j.cub.2016.04.047
[DOI: 10.1016/j.cub.2016.04.047]
Lee SA, Jiang H, Trent CM, Yuen JJ, Narayanasamy S, Curley RW Jr, Harrison EH, Goldberg IJ, Maurer MS, Blaner WS (2014) Cardiac dysfunction in beta-carotene-15,15′-dioxygenase-deficient mice is associated with altered retinoid and lipid metabolism. Am J Physiol Heart Circ Physiol 307(11):H1675-1684. https://doi.org/10.1152/ajpheart.00548.2014
[DOI: 10.1152/ajpheart.00548.2014]
Shiraki T, Kojima D, Fukada Y (2010) Light-induced body color change in developing zebrafish. Photochem Photobiol Sci 9(11):1498–1504. https://doi.org/10.1039/c0pp00199f
[DOI: 10.1039/c0pp00199f]
Ma W, Zhu ZH, Bi XY, Murphy RW, Wang SY, Gao Y, Xiao H, Zhang YP, Luo J (2014) Allopolyploidization is not so simple: evidence from the origin of the tribe Cyprinini (Teleostei: Cypriniformes). Curr Mol Med 14(10):1331–1338. https://doi.org/10.2174/1566524014666141203101543
[DOI: 10.2174/1566524014666141203101543]
Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4(4):259–263. https://doi.org/10.1016/S1672-0229(07)60007-2
[DOI: 10.1016/S1672-0229(07)60007-2]
Jeong H, Lim KM, Goldenring JR, Nam KT (2019) Rab25 deficiency perturbs epidermal differentiation and skin barrier function in mice. Biomol Ther 27(6):553–561. https://doi.org/10.4062/biomolther.2019.125
[DOI: 10.4062/biomolther.2019.125]
Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455. https://doi.org/10.1189/jlb.0103024
[DOI: 10.1189/jlb.0103024]
Denis C, Deiteren K, Mortier A, Tounsi A, Fransen E, Proost P, Renauld J-C, Lambeir A-M (2012) C-Terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity. PLoS ONE 7(3):e34199. https://doi.org/10.1371/journal.pone.0034199
[DOI: 10.1371/journal.pone.0034199]
Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson K 2nd, Azam M, Hou YH (1999) Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255(3):703–706. https://doi.org/10.1006/bbrc.1999.0257
[DOI: 10.1006/bbrc.1999.0257]
Borel P (2003) Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clin Chem Lab Med 41(8):979–994. https://doi.org/10.1515/cclm.2003.151
[DOI: 10.1515/cclm.2003.151]
Grants
31672644/National Natural Science Foundation of China
2020XT0103, 2020TD24/Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences