Probing Intravascular Adhesion and Extravasation of Tumor Cells with Microfluidics.

Naël Osmani, Gautier Follain, Valentin Gensbittel, María Jesús García-León, Sébastien Harlepp, Jacky G Goetz
Author Information
  1. Naël Osmani: INSERM UMR_S1109, Strasbourg, France. osmani@unistra.fr.
  2. Gautier Follain: INSERM UMR_S1109, Strasbourg, France.
  3. Valentin Gensbittel: INSERM UMR_S1109, Strasbourg, France.
  4. María Jesús García-León: INSERM UMR_S1109, Strasbourg, France.
  5. Sébastien Harlepp: INSERM UMR_S1109, Strasbourg, France.
  6. Jacky G Goetz: INSERM UMR_S1109, Strasbourg, France. jacky.goetz@inserm.fr.

Abstract

Cancer metastasis is a multistep process during which tumor cells leave the primary tumor mass and form distant secondary colonies that are lethal. Circulating tumor cells (CTCs) are transported by body fluids to reach distant organs, where they will extravasate and either remain dormant or form new tumor foci. Development of methods to study the behavior of CTCs at the late stages of the intravascular journey is thus required to dissect the molecular mechanisms at play. Using recently developed microfluidics approaches, we have demonstrated that CTCs arrest intravascularly, through a two-step process: (a) CTCs stop using low energy and rapidly activated adhesion receptors to form transient metastable adhesions and (b) CTCs stabilize their adhesions to the endothelial layer with high energy and slowly activated adhesion receptors. In this methods chapter, we describe these easy-to-implement quantitative methods using commercially available microfluidic channels. We detail the use of fast live imaging combined to fine-tuned perfusion to measure the adhesion potential of CTC depending on flow velocities. We document how rapidly engaged early metastable adhesion can be discriminated from slower activated stable adhesion using microfluidics. Finally, CTC extravasation potential can be assessed within this setup using long-term cell culture under flow. Altogether, this experimental pipeline can be adapted to probe the adhesion (to the endothelial layer) and extravasation potential of any circulating cell.

Keywords

References

  1. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292 [DOI: 10.1016/j.cell.2011.09.024]
  2. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306. https://doi.org/10.1038/nature17038 [DOI: 10.1038/nature17038]
  3. Follain G, Herrmann D, Harlepp S et al (2020) Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 20:107–124. https://doi.org/10.1038/s41568-019-0221-x [DOI: 10.1038/s41568-019-0221-x]
  4. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284. https://doi.org/10.1038/nrc2622 [DOI: 10.1038/nrc2622]
  5. Obenauf AC, Massagué J (2015) Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91. https://doi.org/10.1016/j.trecan.2015.07.009 [DOI: 10.1016/j.trecan.2015.07.009]
  6. Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870. https://doi.org/10.1038/nrc3628 [DOI: 10.1038/nrc3628]
  7. Eibl C, Grigoriu S, Hessenberger M et al (2012) Structural and functional analysis of the NLRP4 pyrin domain. Biochemistry 51:7330–7341. https://doi.org/10.1021/bi3007059 [DOI: 10.1021/bi3007059]
  8. McEver RP, Zhu C (2010) Rolling cell adhesion. Annu Rev Cell Dev Biol 26:363–396. https://doi.org/10.1146/annurev.cellbio.042308.113238 [DOI: 10.1146/annurev.cellbio.042308.113238]
  9. Aigner S, Ramos CL, Hafezi-moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12:1241–1251 [DOI: 10.1096/fasebj.12.12.1241]
  10. Laferrière J, Houle F, Taher MM et al (2001) Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem 276:33762–33772. https://doi.org/10.1074/jbc.M008564200 [DOI: 10.1074/jbc.M008564200]
  11. Dallas MR, Liu G, Chen W-C et al (2012) Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J 26:2648–2656. https://doi.org/10.1096/fj.12-203786 [DOI: 10.1096/fj.12-203786]
  12. Hanley WD, Napier SL, Burdick MM et al (2006) Variant isoforms of CD44 are P- and L-selectin ligands on colon carcinoma cells. FASEB J 20:337–339. https://doi.org/10.1096/fj.05-4574fje [DOI: 10.1096/fj.05-4574fje]
  13. Rahn JJ, Chow JW, Horne GJ et al (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22:475–483. https://doi.org/10.1007/s10585-005-3098-x [DOI: 10.1007/s10585-005-3098-x]
  14. Shea DJ, Wirtz D, Stebe KJ, Konstantopoulos K (2015) Distinct kinetic and mechanical properties govern mucin 16- and podocalyxin-mediated tumor cell adhesion to E- and L-selectin in shear flow. Oncotarget 6:24842–24855. https://doi.org/10.18632/oncotarget.4704 [DOI: 10.18632/oncotarget.4704]
  15. Osmani N, Follain G, García León MJ et al (2019) Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep 28:2491–2500.e5. https://doi.org/10.1016/j.celrep.2019.07.102 [DOI: 10.1016/j.celrep.2019.07.102]
  16. Felding-Habermann B, O’Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci 98:1853–1858. https://doi.org/10.1073/pnas.98.4.1853 [DOI: 10.1073/pnas.98.4.1853]
  17. Laferrière J, Houle F, Huot J (2004) Adhesion of HT-29 colon carcinoma cells to endothelial cells requires sequential events involving E-selectin and integrin beta4. Clin Exp Metastasis 21:257–264 [DOI: 10.1023/B]
  18. Klemke M, Weschenfelder T, Konstandin MH, Samstag Y (2007) High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 212:368–374. https://doi.org/10.1002/jcp.21029 [DOI: 10.1002/jcp.21029]
  19. Reymond N, Im JH, Garg R et al (2012) Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J Cell Biol 199:653–668. https://doi.org/10.1083/jcb.201205169 [DOI: 10.1083/jcb.201205169]
  20. Barthel SR, Hays DL, Yazawa EM et al (2013) Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 73:942–952. https://doi.org/10.1158/0008-5472.CAN-12-3264 [DOI: 10.1158/0008-5472.CAN-12-3264]
  21. Follain G, Osmani N, Azevedo AS et al (2018) Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 45:33–52.e12. https://doi.org/10.1016/j.devcel.2018.02.015 [DOI: 10.1016/j.devcel.2018.02.015]
  22. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. https://doi.org/10.1038/nature06385 [DOI: 10.1038/nature06385]
  23. Stott SL, Hsu C-H, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. PNAS 107:18392–18397. https://doi.org/10.1073/pnas.1012539107 [DOI: 10.1073/pnas.1012539107]
  24. Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. https://doi.org/10.1126/science.1228522 [DOI: 10.1126/science.1228522]
  25. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122. https://doi.org/10.1016/j.cell.2014.07.013 [DOI: 10.1016/j.cell.2014.07.013]
  26. Bagnall JS, Byun S, Begum S et al (2015) Deformability of tumor cells versus blood cells. Sci Rep 5:18542. https://doi.org/10.1038/srep18542 [DOI: 10.1038/srep18542]
  27. Au SH, Storey BD, Moore JC et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A 113:4947–4952. https://doi.org/10.1073/pnas.1524448113 [DOI: 10.1073/pnas.1524448113]
  28. Follain G, Osmani N, Fuchs C et al (2018) Using the zebrafish embryo to dissect the early steps of the metastasis cascade. In: Cell migration. Humana Press, New York, NY, pp 195–211 [DOI: 10.1007/978-1-4939-7701-7_15]
  29. Osmani N, Goetz JG (2019) Multiscale imaging of metastasis in zebrafish. Trends Cancer 5:766–778. https://doi.org/10.1016/j.trecan.2019.10.003 [DOI: 10.1016/j.trecan.2019.10.003]
  30. Regmi S, Fu A, Luo KQ (2017) High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep 7:39975. https://doi.org/10.1038/srep39975 [DOI: 10.1038/srep39975]
  31. Xin Y, Chen X, Tang X et al (2019) Mechanics and actomyosin-dependent survival/chemoresistance of suspended tumor cells in shear flow. Biophys J 116:1803–1814. https://doi.org/10.1016/j.bpj.2019.04.011 [DOI: 10.1016/j.bpj.2019.04.011]
  32. Hyenne V, Ghoroghi S, Collot M et al (2019) Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev Cell 48:554–572.e7. https://doi.org/10.1016/j.devcel.2019.01.014 [DOI: 10.1016/j.devcel.2019.01.014]

MeSH Term

Animals
Cell Adhesion
Cell Line, Tumor
Cell Migration Assays
Humans
Microfluidics
Neoplastic Cells, Circulating
Transendothelial and Transepithelial Migration

Word Cloud

Created with Highcharts 10.0.0CTCsadhesiontumorusingcellsformmethodsactivatedpotentialcandistantCirculatingmicrofluidicsenergyrapidlyreceptorsmetastableadhesionsendotheliallayerimagingCTCflowextravasationcellAdhesionExtravasationMicrofluidicsCancermetastasismultistepprocessleaveprimarymasssecondarycolonieslethaltransportedbodyfluidsreachorganswillextravasateeitherremaindormantnewfociDevelopmentstudybehaviorlatestagesintravascularjourneythusrequireddissectmolecularmechanismsplayUsingrecentlydevelopedapproachesdemonstratedarrestintravascularlytwo-stepprocess:stoplowtransientbstabilizehighslowlychapterdescribeeasy-to-implementquantitativecommerciallyavailablemicrofluidicchannelsdetailusefastlivecombinedfine-tunedperfusionmeasuredependingvelocitiesdocumentengagedearlydiscriminatedslowerstableFinallyassessedwithinsetuplong-termcultureAltogetherexperimentalpipelineadaptedprobecirculatingProbingIntravascularTumorCellsLiveMetastasis

Similar Articles

Cited By