Comparative transcriptomic analysis of the different developmental stages of ovary in red swamp crayfish Procambarus clarkii.

Yizhi Zhong, Wenbin Zhao, Zhangsheng Tang, Liming Huang, Xiangxing Zhu, Xiang Liang, Aifen Yan, Zhifa Lu, Yanling Yu, Dongsheng Tang, Dapeng Wang, Zhuanling Lu
Author Information
  1. Yizhi Zhong: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  2. Wenbin Zhao: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  3. Zhangsheng Tang: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  4. Liming Huang: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  5. Xiangxing Zhu: Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan, 528225, China.
  6. Xiang Liang: Development Research Institute of Agro-animal Husbandry Industry, Guangxi University, Nanning, 530004, China.
  7. Aifen Yan: Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan, 528225, China.
  8. Zhifa Lu: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  9. Yanling Yu: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China.
  10. Dongsheng Tang: Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan, 528225, China.
  11. Dapeng Wang: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China. oucwdp@163.com.
  12. Zhuanling Lu: Guangxi Academy of Fishery Sciences/Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China. nicky.004@163.com.

Abstract

BACKGROUND: The red swamp crayfish Procambarus clarkii is a freshwater species that possesses high adaptability, environmental tolerance, and fecundity. P. clarkii is artificially farmed on a large scale in China. However, the molecular mechanisms of ovarian development in P. clarkii remain largely unknown. In this study, we identified four stages of P. clarkii ovary development, the previtellogenic stage (stage I), early vitellogenic stage (stage II), middle vitellogenic stage (stage III), and mature stage (stage IV) and compared the transcriptomics among these four stages through next-generation sequencing (NGS).
RESULTS: The total numbers of clean reads of the four stages ranged from 42,013,648 to 62,220,956. A total of 216,444 unigenes were obtained, and the GC content of most unigenes was slightly less than the AT content. Principal Component Analysis (PCA) and Anosim analysis demonstrated that the grouping of these four stages was feasible, and each stage could be distinguished from the others. In the expression pattern analysis, 2301 genes were continuously increase from stage I to stage IV, and 2660 genes were sharply decrease at stage IV compared to stages I-III. By comparing each of the stages at the same time, four clusters of differentially expressed genes (DEGs) were found to be uniquely highly expressed in stage I (136 genes), stage II (43 genes), stage III-IV (49 genes), and stage IV (22 genes), thus exhibiting developmental stage specificity. Moreover, in comparisons between adjacent stages, the number of DEGs between stage III and IV was the highest. GO enrichment analysis demonstrated that nutrient reservoir activity was highest at stage II and that this played a foreshadowing role in ovarian development, and the GO terms of cell, intracellular and organelle participated in the ovary maturation during later stages. In addition, KEGG pathway analysis revealed that the early development of the ovary was mainly associated with the PI3K-Akt signaling pathway and focal adhesion; the middle developmental period was related to apoptosis, lysine biosynthesis, and the NF-kappa B signaling pathway; the late developmental period was involved with the cell cycle and the p53 signaling pathway.
CONCLUSION: These transcriptomic data provide insights into the molecular mechanisms of ovarian development in P. clarkii. The results will be helpful for improving the reproduction and development of this aquatic species.

Keywords

References

  1. Hum Reprod. 2018 Sep 1;33(9):1705-1714 [PMID: 30032281]
  2. J Exp Zool. 2002 Jan 1;292(1):82-7 [PMID: 11754024]
  3. PLoS One. 2014 Oct 22;9(10):e110548 [PMID: 25338101]
  4. Fish Shellfish Immunol. 2013 Aug;35(2):607-17 [PMID: 23747834]
  5. Fish Shellfish Immunol. 2020 Mar;98:766-772 [PMID: 31734284]
  6. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  7. Clin Exp Reprod Med. 2019 Jun;46(2):43-49 [PMID: 31181871]
  8. Nat Rev Genet. 2011 Feb;12(2):87-98 [PMID: 21191423]
  9. Nat Rev Genet. 2011 Sep 07;12(10):671-82 [PMID: 21897427]
  10. Genes (Basel). 2017 Nov 10;8(11): [PMID: 29125590]
  11. Pest Manag Sci. 2010 Sep;66(9):996-1001 [PMID: 20730992]
  12. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  13. Mitochondrial DNA A DNA Mapp Seq Anal. 2020 Mar;31(2):48-56 [PMID: 32009490]
  14. PLoS One. 2014 Aug 13;9(8):e105122 [PMID: 25118947]
  15. Nahrung. 1999 Apr;43(2):126-8 [PMID: 10331212]
  16. Bioinformatics. 2012 Aug 15;28(16):2184-5 [PMID: 22743226]
  17. Mitochondrial DNA A DNA Mapp Seq Anal. 2017 Nov;28(6):860-866 [PMID: 27551910]
  18. Dev Biol. 1973 Nov;35(1):160-70 [PMID: 4207109]
  19. PLoS One. 2012;7(7):e40652 [PMID: 22808222]
  20. High Throughput. 2018 Sep 12;7(3): [PMID: 30213058]
  21. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  22. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  23. Dev Biol. 2006 Nov 1;299(1):1-11 [PMID: 16970938]
  24. J Acoust Soc Am. 2012 Sep;132(3):1792-8 [PMID: 22978906]
  25. Aquat Toxicol. 2018 Apr;197:136-142 [PMID: 29482076]
  26. Nat Rev Genet. 2010 Jan;11(1):31-46 [PMID: 19997069]
  27. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  28. Bioinformatics. 2006 Jul 1;22(13):1600-7 [PMID: 16606683]
  29. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  30. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  31. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10280-4 [PMID: 20479243]
  32. Environ Pollut. 2019 Oct;253:749-758 [PMID: 31344537]
  33. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  34. Gen Comp Endocrinol. 1998 Aug;111(2):113-8 [PMID: 9679083]
  35. Sci Rep. 2016 Jun 10;6:26780 [PMID: 27283359]
  36. Int J Dev Biol. 2012;56(10-12):959-67 [PMID: 23417417]
  37. Comp Biochem Physiol A Mol Integr Physiol. 2012 Sep;163(1):15-21 [PMID: 22554447]
  38. Int J Food Microbiol. 2016 Dec 5;238:132-138 [PMID: 27620824]
  39. Ecotoxicol Environ Saf. 2012 Jun;80:266-72 [PMID: 22503064]
  40. Genet Mol Res. 2013 Mar 13;12(1):791-800 [PMID: 23546963]
  41. Gen Comp Endocrinol. 2002 Jan;125(1):34-40 [PMID: 11825032]
  42. Sci Rep. 2018 Apr 3;8(1):5586 [PMID: 29615795]
  43. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  44. PLoS One. 2015 Jun 04;10(6):e0128659 [PMID: 26042806]
  45. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 [PMID: 10592175]
  46. Bull Environ Contam Toxicol. 1980 Sep;25(3):465-9 [PMID: 7426798]
  47. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  48. Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15261-4 [PMID: 15477597]
  49. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 [PMID: 25348405]
  50. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  51. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  52. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  53. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  54. Nucleic Acids Res. 2013 Jan;41(Database issue):D348-52 [PMID: 23197659]
  55. Sci Rep. 2017 Aug 15;7(1):8272 [PMID: 28811671]
  56. PeerJ. 2019 Jan 23;7:e6214 [PMID: 30697477]
  57. PLoS One. 2011;6(9):e24427 [PMID: 21915325]
  58. J Exp Biol. 2012 Jun 1;215(Pt 11):1892-904 [PMID: 22573768]
  59. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]
  60. Science. 1975 Dec 19;190(4220):1225-6 [PMID: 1198111]

MeSH Term

Animals
Astacoidea
China
Female
Gene Expression Profiling
Ovary
Phosphatidylinositol 3-Kinases
Transcriptome

Word Cloud

Created with Highcharts 10.0.0stagestagesclarkiigenesdevelopmentfourIVanalysisdevelopmentalPovarypathwayProcambarusmechanismsovarianIIsignalingredswampcrayfishspeciesmolecularearlyvitellogenicmiddleIIIcomparedtotalunigenescontentdemonstratedexpressedDEGshighestGOcellperiodtranscriptomicBACKGROUND:freshwaterpossesseshighadaptabilityenvironmentaltolerancefecundityartificiallyfarmedlargescaleChinaHoweverremainlargelyunknownstudyidentifiedprevitellogenicmaturetranscriptomicsamongnext-generationsequencingNGSRESULTS:numberscleanreadsranged4201364862220956216444obtainedGCslightlylessATPrincipalComponentAnalysisPCAAnosimgroupingfeasibledistinguishedothersexpressionpattern2301continuouslyincrease2660sharplydecreaseI-IIIcomparingtimeclustersdifferentiallyfounduniquelyhighly13643III-IV4922thusexhibitingspecificityMoreovercomparisonsadjacentnumberenrichmentnutrientreservoiractivityplayedforeshadowingroletermsintracellularorganelleparticipatedmaturationlateradditionKEGGrevealedmainlyassociatedPI3K-AktfocaladhesionrelatedapoptosislysinebiosynthesisNF-kappaBlateinvolvedcyclep53CONCLUSION:dataprovideinsightsresultswillhelpfulimprovingreproductionaquaticComparativedifferentDifferentMolecularOvaryTranscriptomics

Similar Articles

Cited By (5)