Making 'Chemical Cocktails' - Evolution of Urban Geochemical Processes across the Periodic Table of Elements.

Sujay S Kaushal, Kelsey L Wood, Joseph G Galella, Austin M Gion, Shahan Haq, Phillip J Goodling, Katherine A Haviland, Jenna E Reimer, Carol J Morel, Barret Wessel, William Nguyen, John W Hollingsworth, Kevin Mei, Julian Leal, Jacob Widmer, Rahat Sharif, Paul M Mayer, Tamara A Newcomer Johnson, Katie Delaney Newcomb, Evan Smith, Kenneth T Belt
Author Information
  1. Sujay S Kaushal: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  2. Kelsey L Wood: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  3. Joseph G Galella: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  4. Austin M Gion: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  5. Shahan Haq: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  6. Phillip J Goodling: MD-DE-DC US Geological Survey Water Science Center, 5522 Research Park Drive, Catonsville, Maryland 21228, USA.
  7. Katherine A Haviland: Department of Natural Resources, Cornell University, Ithaca, New York 14853 USA.
  8. Jenna E Reimer: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  9. Carol J Morel: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  10. Barret Wessel: Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA.
  11. William Nguyen: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  12. John W Hollingsworth: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  13. Kevin Mei: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  14. Julian Leal: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  15. Jacob Widmer: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  16. Rahat Sharif: Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA.
  17. Paul M Mayer: US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Western Ecology Division, 200 SW 35 Street, Corvallis, Oregon 97333, USA.
  18. Tamara A Newcomer Johnson: US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, USA.
  19. Katie Delaney Newcomb: USDA Forest Service, 1220 SW 3rd Ave, Portland, Oregon 97204, USA.
  20. Evan Smith: Department of Geology, University of Maryland, College Park, Maryland 20740, USA.
  21. Kenneth T Belt: Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250.

Abstract

Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.

Keywords

References

  1. Water Res. 2001 Oct;35(14):3473-7 [PMID: 11547870]
  2. Chemosphere. 1999 Jul;39(2):343-77 [PMID: 10399847]
  3. Environ Toxicol Chem. 2018 Mar;37(3):715-728 [PMID: 28845901]
  4. J Hazard Mater. 2017 Feb 5;323(Pt B):641-653 [PMID: 28340907]
  5. Sci Total Environ. 2018 Mar 15;618:658-664 [PMID: 29055590]
  6. J Appl Ecol. 2016 Apr;53(2):398-407 [PMID: 27667853]
  7. Sci Total Environ. 2019 Feb 20;652:134-146 [PMID: 30359797]
  8. Crit Rev Toxicol. 2019 Feb;49(2):174-189 [PMID: 30931677]
  9. Ecol Appl. 2006 Feb;16(1):299-312 [PMID: 16705981]
  10. Ecol Appl. 2008 Oct;18(7):1615-26 [PMID: 18839758]
  11. Environ Sci Technol. 2013 Sep 17;47(18):10302-11 [PMID: 23883395]
  12. Environ Sci Technol. 2009 Mar 15;43(6):1970-6 [PMID: 19368200]
  13. J Environ Manage. 2013 Oct 15;128:306-12 [PMID: 23770438]
  14. Sci Total Environ. 2020 Apr 10;712:135597 [PMID: 31791787]
  15. Environ Sci Technol. 2014 Jul 15;48(14):7817-24 [PMID: 24919113]
  16. Trends Ecol Evol. 2006 Apr;21(4):192-9 [PMID: 16701085]
  17. Science. 2020 Jan 24;367(6476):388-392 [PMID: 31974244]
  18. Water Res. 2006 Feb;40(4):753-67 [PMID: 16448684]
  19. Am J Public Health. 1978 Jun;68(6):557-60 [PMID: 655314]
  20. Science. 2014 Aug 15;345(6198):812-4 [PMID: 25124439]
  21. Environ Health Perspect. 2005 Apr;113(4):383-90 [PMID: 15811826]
  22. Environ Model Softw. 2018 Nov;109:368-379 [PMID: 30505208]
  23. Water Res. 2014 Feb 1;49:166-74 [PMID: 24326021]
  24. Environ Sci Technol. 2017 Sep 5;51(17):9477-9487 [PMID: 28730814]
  25. Sci Total Environ. 2006 May 1;360(1-3):246-53 [PMID: 16226299]
  26. Biogeochemistry. 2018;141(3):281-305 [PMID: 31427837]
  27. Appl Geochem. 2017 Aug 1;83:121-135 [PMID: 30220785]
  28. Sewage Work J. 1946 Jul;18(4):597-640 [PMID: 20999451]
  29. Water Res. 2005 Jul;39(12):2747-55 [PMID: 15978649]
  30. Infrastructures (Basel). 2017 Sep 6;2(3): [PMID: 32832712]
  31. Environ Sci Technol. 2017 Apr 18;51(8):4165-4172 [PMID: 28324648]
  32. Sci Total Environ. 2014 Jun 1;482-483:366-77 [PMID: 24662205]
  33. J Contam Hydrol. 2009 Apr 15;106(1-2):1-14 [PMID: 19167133]
  34. Water Res. 2015 Mar 1;70:350-9 [PMID: 25543244]
  35. Sci Total Environ. 2000 May 5;251-252:477-95 [PMID: 10847179]
  36. Glob Chang Biol. 2016 Feb;22(2):613-26 [PMID: 26390994]
  37. Science. 2018 Apr 6;360(6384):28-29 [PMID: 29622640]
  38. J Environ Qual. 2010 Feb 19;39(2):642-53 [PMID: 20176837]
  39. Mar Pollut Bull. 2016 Jul 15;108(1-2):24-32 [PMID: 27216043]
  40. Sci Total Environ. 2019 Jun 25;671:388-403 [PMID: 30933795]
  41. Chemosphere. 2010 Aug;80(9):991-7 [PMID: 20579685]
  42. Environ Sci Technol. 2017 Feb 7;51(3):1195-1202 [PMID: 28051297]
  43. Environ Sci Technol. 2011 Oct 1;45(19):8225-32 [PMID: 21830824]
  44. Nat Commun. 2020 Mar 26;11(1):1563 [PMID: 32218437]
  45. Sci Total Environ. 2008 Jul 1;397(1-3):158-66 [PMID: 18407320]
  46. Sci Total Environ. 2008 Sep 15;403(1-3):178-87 [PMID: 18573517]
  47. Environ Sci Technol. 2008 Sep 1;42(17):6690-6 [PMID: 18800550]
  48. Ecol Appl. 2017 Dec;27(8):2382-2396 [PMID: 29044812]
  49. J Environ Qual. 2009 Aug 24;38(5):1942-55 [PMID: 19704138]
  50. Environ Sci Technol. 2018 Sep 18;52(18):10317-10327 [PMID: 30192129]
  51. Chemosphere. 2014 Jul;106:36-43 [PMID: 24485321]
  52. Sci Total Environ. 2017 Feb 1;579:124-132 [PMID: 27866745]
  53. Environ Sci Technol. 2013 Feb 19;47(4):1816-23 [PMID: 23259752]
  54. Environ Pollut. 2018 Jan;232:31-41 [PMID: 28966026]
  55. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E574-E583 [PMID: 29311318]
  56. J Environ Qual. 2010 Apr 13;39(3):810-23 [PMID: 20400577]
  57. Environ Sci Technol. 2006 Nov 1;40(21):6630-5 [PMID: 17144288]
  58. Environ Manage. 2013 Feb;51(2):392-413 [PMID: 23180248]
  59. Sci Total Environ. 2013 Jan 15;443:700-16 [PMID: 23228716]
  60. Philos Trans R Soc Lond B Biol Sci. 2020 Mar 16;375(1794):20190124 [PMID: 31983341]
  61. Integr Environ Assess Manag. 2010 Apr;6(2):311-3 [PMID: 20821692]
  62. Toxicology. 2010 Mar 10;269(2-3):190-7 [PMID: 19686796]
  63. Environ Sci Technol. 2013 Jun 4;47(11):6047-51 [PMID: 23631416]
  64. Sci Total Environ. 2017 Dec 1;601-602:32-44 [PMID: 28549286]
  65. Environ Sci Technol. 2013 May 7;47(9):4104-12 [PMID: 23600792]
  66. Environ Sci Technol. 2016 Jan 5;50(1):54-61 [PMID: 26618849]
  67. Ecol Appl. 2008 Apr;18(3):789-804 [PMID: 18488635]
  68. Ecol Appl. 2012 Mar;22(2):705-21 [PMID: 22611866]
  69. Environ Pollut. 2018 Aug;239:714-721 [PMID: 29723821]
  70. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6751-6755 [PMID: 29891715]
  71. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  72. J Environ Qual. 2011 Sep-Oct;40(5):1601-6 [PMID: 21869523]
  73. Aquat Toxicol. 2007 Jun 15;83(2):143-8 [PMID: 17482288]
  74. Bull Environ Contam Toxicol. 2005 Jan;74(1):24-31 [PMID: 15768494]
  75. Ecol Eng. 2019 Dec 1;140:1-105589 [PMID: 32020990]
  76. Chemosphere. 2017 Feb;169:450-459 [PMID: 27889511]
  77. Sci Total Environ. 2016 Nov 15;571:124-33 [PMID: 27470671]
  78. Environ Pollut. 2016 Sep;216:371-379 [PMID: 27323343]
  79. PLoS One. 2015 Jul 17;10(7):e0132256 [PMID: 26186731]
  80. J Environ Qual. 2007 Jun 27;36(4):1172-80 [PMID: 17596626]
  81. Sci Total Environ. 2020 Apr 20;714:136503 [PMID: 32018946]
  82. Science. 2008 Feb 8;319(5864):756-60 [PMID: 18258902]
  83. Environ Sci Technol. 2012 Sep 4;46(17):9447-55 [PMID: 22839503]
  84. Water Res. 2017 Mar 1;110:241-251 [PMID: 28011364]
  85. Nature. 1988 May 12;333(6169):134-9 [PMID: 3285219]
  86. Sci Total Environ. 2018 Dec 10;644:1469-1476 [PMID: 30743859]
  87. Environ Sci Technol. 2004 Oct 15;38(20):5319-26 [PMID: 15543732]
  88. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509916]
  89. Environ Toxicol Chem. 2018 Mar;37(3):703-714 [PMID: 28861906]
  90. Regul Toxicol Pharmacol. 2016 Oct;80:321-34 [PMID: 27211294]
  91. J Hazard Mater. 2010 Sep 15;181(1-3):1051-8 [PMID: 20638969]
  92. Environ Pollut. 2014 Apr;187:170-81 [PMID: 24508644]
  93. Freshw Biol. 2017 Oct 15;62(11):1917-1928 [PMID: 35340891]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0chemicalcocktailsurbanelementsmajortraceincreasedmixturesstreamsacrossconcentrationsglobalwatershedssourcesweatheringgeochemicalprocessesusingtransportionsnutrientsreferenceconditionswatersheddistinctUrbanizationformationelementalcombinationsalsodue123drainage4transformationschangespHnecessaryindividualstrategiesimpactsdiscussformhuman-acceleratedfreshwatersalinizationsyndromereviewpatternsdifferentworldanalysisdrainingmultiplecomparedChemicaldiurnalcyclesdissolvedmeasuredsensorssignificantlycanalongPeriodicTablewaterscocktailapproachmanagecontributesnovelsignaturesterrestrialaquaticknown'chemical'compositionevolvesspacetimeto:elevatedanthropogenicacceleratedcorrosionbuiltenvironmentdensityintensificationwaterconveyancesystemsenhancedratestemperatureionicstrengthredoxpotentialsCharacterizingunderlyingfor:trackingpollutioncomplexinsteadcompoundsdevelopingnewco-managinggroupscontaminantsidentifyingproxiespredictingcontinuoussensordatadeterminingwhetherinteractiveeffectsproduceecosystem-scalegreatersumstressorsFirstuniquesoilacidification-alkalinizationSecondsynthesizecarbonregionsmakecomparisonsadditionhighlightexamplesBaltimore-WashingtonDCregionshowmetalswell-definedland-usegradienthuman-dominatedformedcoincidingstreamflowoxygenvariableshigh-frequencyrelatedspecificconductancep<005ConcentrationspeakeddecreasedlongitudinallyurbanizationconsistentshiftsupstreamdownstreamcitiesshowsincreaseFurthermoresimilarbiogeochemicalgroupedamongorganicmatterdecadesthroughoutbasinsconcludesynthesisproposingmonitoringmanagingsourcecontrolecosystemrestorationgreeninfrastructurefutureresearchdirectionsapplyingdiagnoseenvironmentalproblemsUltimatelytargetingholisticallymonitoremergingworld'sfreshMaking'ChemicalCocktails'-EvolutionUrbanGeochemicalProcessesElementsevolutionkarstcontinuum

Similar Articles

Cited By (20)