Power Conversion Efficiency Improvement of Planar Organic Photovoltaic Cells Using an Original Hybrid Electron-Transporting Layer.

Linda Cattin, Guy Louarn, Ludovic Arzel, Nicolas Stephant, Mustapha Morsli, Jean Christian Bernède
Author Information
  1. Linda Cattin: Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes F-44000, France.
  2. Guy Louarn: Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes F-44000, France.
  3. Ludovic Arzel: Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes F-44000, France.
  4. Nicolas Stephant: Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, Nantes F-44000, France.
  5. Mustapha Morsli: Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes F-44000, France.
  6. Jean Christian Bernède: MOLTECH-Anjou, CNRS-UMR 6200, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes F-44322, France.

Abstract

In organic photovoltaic (OPV) cells, besides the organic active layer, the electron-transporting layer (ETL) has a primordial role in transporting electrons and blocking holes. In planar heterojunction-OPVs (PHJ-OPVs), the ETL is called the exciton blocking layer (EBL). The optimum thickness of the EBL is 9 nm. However, in the case of inverted OPVs, such thickness is too high to permit efficient electron collection, due to the fact that there is no possibility of metal diffusion in the EBL during the top metal electrode deposition. In the present work, we show that the introduction of a thin potassium layer between the indium tin oxide (ITO) cathode and the EBL increases dramatically the conductivity of the EBL. We demonstrate that K not only behaves as a simple ultrathin layer allowing for the discrimination of the charge carriers at the cathode/organic material interface but also by diffusing into the EBL, it increases its conductivity by 3 orders of magnitude, which allows us to improve the shape of the - characteristics and the PHJ-inverted OPV efficiency by more than 33%. Moreover, we also show that PHJ-inverted OPVs with K in their EBLs are more stable than those with Alq alone.

References

  1. Phys Chem Chem Phys. 2016 Feb 21;18(7):5444-52 [PMID: 26821701]
  2. Adv Mater. 2013 Dec 10;25(46):6760-4 [PMID: 24027092]
  3. Adv Mater. 2019 Apr;31(14):e1808356 [PMID: 30779391]
  4. Adv Mater. 2017 Jul;29(25): [PMID: 27885716]
  5. Sci Bull (Beijing). 2020 Feb 26;65(4):272-275 [PMID: 36659090]
  6. Nat Commun. 2014 Mar 07;5:3406 [PMID: 24603622]
  7. Adv Mater. 2012 Oct 23;24(40):5408-27 [PMID: 22945550]
  8. Chemistry. 2013 Jul 22;19(30):9948-60 [PMID: 23776042]

Word Cloud

Created with Highcharts 10.0.0EBLlayerorganicOPVETLblockingthicknessOPVsmetalshowincreasesconductivityKalsoPHJ-invertedphotovoltaiccellsbesidesactiveelectron-transportingprimordialroletransportingelectronsholesplanarheterojunction-OPVsPHJ-OPVscalledexcitonoptimum9nmHowevercaseinvertedhighpermitefficientelectroncollectionduefactpossibilitydiffusiontopelectrodedepositionpresentworkintroductionthinpotassiumindiumtinoxideITOcathodedramaticallydemonstratebehavessimpleultrathinallowingdiscriminationchargecarrierscathode/organicmaterialinterfacediffusing3ordersmagnitudeallowsusimproveshape-characteristicsefficiency33%MoreoverEBLsstableAlqalonePowerConversionEfficiencyImprovementPlanarOrganicPhotovoltaicCellsUsingOriginalHybridElectron-TransportingLayer

Similar Articles

Cited By