EqSpike: spike-driven equilibrium propagation for neuromorphic implementations.

Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz, Teodora Petrisor, Julie Grollier
Author Information
  1. Erwann Martin: Thales Research and Technology, 91767 Palaiseau, France.
  2. Maxence Ernoult: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  3. Jérémie Laydevant: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  4. Shuai Li: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  5. Damien Querlioz: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.
  6. Teodora Petrisor: Thales Research and Technology, 91767 Palaiseau, France.
  7. Julie Grollier: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.

Abstract

Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.

Keywords

References

  1. Int J Neural Syst. 2020 Jun;30(6):2050027 [PMID: 32466691]
  2. Sci Rep. 2017 Jul 13;7(1):5288 [PMID: 28706303]
  3. Elife. 2020 Feb 26;9: [PMID: 32101161]
  4. Neural Comput. 2017 Mar;29(3):555-577 [PMID: 28095200]
  5. Nat Commun. 2016 Sep 29;7:12611 [PMID: 27681181]
  6. Materials (Basel). 2020 Jan 01;13(1): [PMID: 31906325]
  7. Front Neurosci. 2020 Mar 24;14:240 [PMID: 32265641]
  8. Nat Nanotechnol. 2020 Jul;15(7):529-544 [PMID: 32231270]
  9. Front Neurosci. 2018 Oct 25;12:774 [PMID: 30410432]
  10. IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):145-158 [PMID: 30418919]
  11. Front Neurosci. 2017 Jun 21;11:324 [PMID: 28680387]
  12. Annu Rev Neurosci. 2001;24:139-66 [PMID: 11283308]
  13. Nature. 2019 May;569(7755):208-214 [PMID: 31068721]
  14. Nat Neurosci. 2019 Nov;22(11):1761-1770 [PMID: 31659335]
  15. Front Neurosci. 2021 Feb 18;15:633674 [PMID: 33679315]
  16. Front Neurosci. 2016 Nov 08;10:508 [PMID: 27877107]
  17. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  18. Nat Neurosci. 2021 Jul;24(7):1010-1019 [PMID: 33986551]
  19. Neural Netw. 2012 Aug;32:339-48 [PMID: 22386501]
  20. Nat Commun. 2018 Dec 14;9(1):5311 [PMID: 30552327]
  21. Nature. 1996 Jun 6;381(6582):526-8 [PMID: 8632826]
  22. Nat Commun. 2020 Jul 17;11(1):3625 [PMID: 32681001]
  23. Front Neurosci. 2015 Apr 29;9:141 [PMID: 25972778]
  24. PLoS Comput Biol. 2007 Feb 16;3(2):e31 [PMID: 17305422]
  25. Front Neurosci. 2011 Mar 17;5:26 [PMID: 21442012]
  26. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  27. Front Neurosci. 2019 Jan 07;12:991 [PMID: 30666180]
  28. Front Comput Neurosci. 2017 May 04;11:24 [PMID: 28522969]
  29. IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):3227-3235 [PMID: 28783639]
  30. Front Neurosci. 2020 May 12;14:424 [PMID: 32477050]

Word Cloud

Created with Highcharts 10.0.0neuromorphicpropagationlearningEqSpikeequilibriumimplementedlocalsystemsaccuracyalternativerate-basednetworksspikingneuralshowordersFindingspike-basedalgorithmscanwithinconstraintsachievinghighremainsformidablechallengeEquilibriumpromisingbackpropagationinvolvescomputationshardware-orientedstudiesfarfocusedworkdevelopnetworkalgorithmcalledcompatiblelearnssimulationsobtaintestrecognition976%MNISThandwrittendigitsdatasetMixedNationalInstituteStandardsTechnologysimilarcomparingfavorablytechniquesin silicontechnologyreduceenergyconsumptioninferencetrainingrespectivelythreetwomagnitudecomparedgraphicsprocessingunitsFinallyalsoweightupdatesexhibitformspike-timing-dependentplasticityhighlightingpossibleconnectionbiologyEqSpike:spike-drivenimplementationsAlgorithmsArtificialIntelligenceComputerScience

Similar Articles

Cited By