Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling.

Olivia E Clifton, Arlene M Fiore, William J Massman, Colleen B Baublitz, Mhairi Coyle, Lisa Emberson, Silvano Fares, Delphine K Farmer, Pierre Gentine, Giacomo Gerosa, Alex B Guenther, Detlev Helmig, Danica L Lombardozzi, J William Munger, Edward G Patton, Sally E Pusede, Donna B Schwede, Sam J Silva, Matthias Sörgel, Allison L Steiner, Amos P K Tai
Author Information
  1. Olivia E Clifton: National Center for Atmospheric Research, Boulder, CO, USA.
  2. Arlene M Fiore: Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
  3. William J Massman: USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA.
  4. Colleen B Baublitz: Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
  5. Mhairi Coyle: Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK.
  6. Lisa Emberson: Stockholm Environment Institute, Environment Department, University of York, York, UK.
  7. Silvano Fares: Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy.
  8. Delphine K Farmer: Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
  9. Pierre Gentine: Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.
  10. Giacomo Gerosa: Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy.
  11. Alex B Guenther: Department of Earth System Science, University of California, Irvine, CA, USA.
  12. Detlev Helmig: Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA.
  13. Danica L Lombardozzi: National Center for Atmospheric Research, Boulder, CO, USA.
  14. J William Munger: School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
  15. Edward G Patton: National Center for Atmospheric Research, Boulder, CO, USA.
  16. Sally E Pusede: Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA.
  17. Donna B Schwede: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA.
  18. Sam J Silva: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  19. Matthias Sörgel: Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany.
  20. Allison L Steiner: Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA.
  21. Amos P K Tai: Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.

Abstract

Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

Keywords

References

  1. Front Plant Sci. 2013 Oct 24;4:422 [PMID: 24167510]
  2. Symp Soc Exp Biol. 1977;31:471-505 [PMID: 756635]
  3. PLoS One. 2017 Oct 12;12(10):e0185481 [PMID: 29023453]
  4. Plant Physiol. 1989 Jul;90(3):1163-7 [PMID: 16666867]
  5. Environ Pollut. 2007 Apr;146(3):726-35 [PMID: 16766104]
  6. Plant Cell Environ. 2017 Jul;40(7):1214-1238 [PMID: 27925232]
  7. J Exp Bot. 2018 Jan 23;69(3):681-697 [PMID: 29301045]
  8. Environ Pollut. 2012 Nov;170:39-42 [PMID: 22763329]
  9. Environ Pollut. 2005 Oct;137(3):483-93 [PMID: 16005760]
  10. J Geophys Res Atmos. 2017 Feb 16;122(3):1930-1952 [PMID: 30505641]
  11. J Phys Chem A. 2008 Feb 14;112(6):1268-76 [PMID: 18205335]
  12. Sci Total Environ. 2006 Oct 15;370(1):117-32 [PMID: 16846632]
  13. Nat Commun. 2018 Jun 8;9(1):2226 [PMID: 29884892]
  14. Environ Pollut. 1992;75(1):53-9 [PMID: 15092049]
  15. Sci Rep. 2018 May 16;8(1):7667 [PMID: 29769592]
  16. Rapid Commun Mass Spectrom. 2009 Apr;23(7):980-4 [PMID: 19241413]
  17. Annu Rev Plant Biol. 2012;63:637-61 [PMID: 22404461]
  18. Plant Biol (Stuttg). 2008 Jan;10(1):44-54 [PMID: 17538866]
  19. Environ Pollut. 1995;89(3):247-54 [PMID: 15091514]
  20. Environ Pollut. 2009 May;157(5):1487-96 [PMID: 19027210]
  21. Nature. 2007 Aug 16;448(7155):791-4 [PMID: 17653194]
  22. Plant Physiol. 1991 Feb;95(2):529-35 [PMID: 16668016]
  23. Environ Pollut. 2003;126(1):5-8 [PMID: 12860097]
  24. Plant Biol (Stuttg). 2007 Mar;9(2):288-97 [PMID: 17357021]
  25. Plant J. 2017 Jun;90(5):886-897 [PMID: 27739639]
  26. Sci Rep. 2015 May 06;5:9871 [PMID: 25943276]
  27. Environ Pollut. 2016 Mar;210:202-10 [PMID: 26735165]
  28. Physiol Plant. 2001 Oct;113(2):249-257 [PMID: 12060303]
  29. Environ Pollut. 2000 Sep;109(3):423-9 [PMID: 15092875]
  30. Tree Physiol. 2016 Dec;36(12):1449-1455 [PMID: 27885171]
  31. Environ Pollut. 1992;75(1):61-7 [PMID: 15092050]
  32. Environ Pollut. 1989;59(2):161-76 [PMID: 15092411]
  33. New Phytol. 1994 Oct;128(2):243-249 [PMID: 33874364]
  34. Geophys Res Lett. 2019 Mar 16;46(5):2940-2948 [PMID: 31068737]
  35. Agric For Meteorol. 2009 Sep 1;149(9):1556-1559 [PMID: 24465070]
  36. Environ Pollut. 2012 Oct;169:258-66 [PMID: 22341155]
  37. J Geophys Res Atmos. 2011 Oct 1;116(D19):16 [PMID: 24707452]
  38. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14162-7 [PMID: 26578759]
  39. Environ Pollut. 2001;115(3):425-36 [PMID: 11789923]
  40. Tree Physiol. 1987 Mar;3(1):63-91 [PMID: 14975835]
  41. Environ Pollut. 2005 Apr;134(3):439-45 [PMID: 15620589]
  42. Plant Biol (Stuttg). 2007 Mar;9(2):320-30 [PMID: 17357024]
  43. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13577-82 [PMID: 10557363]
  44. Plant Physiol. 2012 Oct;160(2):1120-9 [PMID: 22885935]
  45. Environ Pollut. 2010 Aug;158(8):2664-71 [PMID: 20537773]
  46. Environ Pollut. 2010 Jun;158(6):2014-22 [PMID: 20056523]
  47. Nature. 2016 Jun 29;534(7609):680-3 [PMID: 27357794]
  48. Plant Cell Environ. 2006 Sep;29(9):1742-50 [PMID: 16913863]
  49. Chem Rev. 2015 May 27;115(10):4440-75 [PMID: 25856774]
  50. Philos Trans R Soc Lond B Biol Sci. 2011 Nov 27;366(1582):3196-209 [PMID: 22006962]
  51. J Geophys Res Atmos. 2017 Dec 27;122(24):13545-13572 [PMID: 30245953]
  52. Plant Cell Environ. 2017 Jun;40(6):816-830 [PMID: 27764894]
  53. Science. 1993 May 28;260(5112):1314-7 [PMID: 17755426]
  54. Plant Physiol. 1968 Jul;43(7):1017-22 [PMID: 16656876]
  55. Sci Rep. 2016 Sep 12;6:32676 [PMID: 27615148]
  56. Environ Pollut. 2006 Apr;140(3):383-6 [PMID: 16457921]
  57. J Adv Model Earth Syst. 2019 Jan;11(1):231-256 [PMID: 31007838]
  58. Plant Physiol. 2013 Sep;163(1):5-20 [PMID: 23893170]
  59. Atmos Environ (1994). 2009 Sep 1;43(30): [PMID: 24348085]
  60. New Phytol. 2009;182(1):85-90 [PMID: 19226316]
  61. New Phytol. 1993 Nov;125(3):477-507 [PMID: 33874584]
  62. Sci Total Environ. 2017 Dec 31;609:11-16 [PMID: 28732292]
  63. Sci Total Environ. 2012 Jun 15;427-428:347-54 [PMID: 22554531]
  64. Int J Phytoremediation. 2013;15(3):245-56 [PMID: 23488010]
  65. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7222-E7230 [PMID: 27799540]
  66. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666): [PMID: 25750234]
  67. J Adv Model Earth Syst. 2018;10(7):1571-1586 [PMID: 31666920]
  68. Chem Soc Rev. 2016 Jul 7;45(13):3731-46 [PMID: 26555710]
  69. Glob Chang Biol. 2018 Dec;24(12):5708-5723 [PMID: 30218538]
  70. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8835-40 [PMID: 19451635]
  71. Sci Total Environ. 2019 Jul 1;672:296-304 [PMID: 30959296]
  72. Atmos Chem Phys. 2018;18(5):3839-3864 [PMID: 30079085]
  73. Science. 1970 Jul 3;169(3940):79-80 [PMID: 5447535]
  74. J Environ Monit. 2012 May;14(6):1684-95 [PMID: 22622798]
  75. Environ Pollut. 2009 May;157(5):1737-44 [PMID: 18180087]
  76. Environ Pollut. 2014 Jan;184:201-10 [PMID: 24060739]
  77. Oecologia. 2012 Jul;169(3):651-9 [PMID: 22218943]
  78. Atmos Chem Phys. 2018 Jul 23;18(14):10433-10457 [PMID: 33354203]
  79. Planta. 2000 Feb;210(3):454-67 [PMID: 10750904]
  80. Environ Pollut. 2000 Jan;107(1):1-20 [PMID: 15093004]
  81. Environ Sci Technol. 2013 Feb 19;47(4):1930-6 [PMID: 23343053]
  82. Plant Physiol. 1998 Dec;118(4):1243-52 [PMID: 9847098]
  83. New Phytol. 2007;174(1):125-136 [PMID: 17335503]
  84. Plant Physiol. 2007 Mar;143(3):1096-100 [PMID: 17344434]
  85. Sci Total Environ. 2018 Dec 15;645:1579-1597 [PMID: 30248876]
  86. Environ Sci Technol. 2017 Jun 6;51(11):6229-6236 [PMID: 28443333]
  87. Environ Pollut. 2011 May;159(5):1024-34 [PMID: 21177010]
  88. Environ Pollut. 2008 Dec;156(3):567-82 [PMID: 18571819]
  89. Plant Cell Environ. 2013 Sep;36(9):1691-9 [PMID: 23730938]

Grants

  1. EPA999999/Intramural EPA