[Current microbiological aspects of community respiratory infection beyond COVID-19].

R Cantón
Author Information
  1. R Cantón: Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal e Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain. rafael.canton@salud.madrid.org.

Abstract

From a microbiological point of view, both empirical and targeted antimicrobial treatment in respiratory infection is based on the sensitivity profile of isolated microorganisms and the possible resistance mechanisms that they may present. The latter may vary in different geographic areas according to prescription profiles and vaccination programs. Beta-lactam antibiotics, fluoroquinolones, and macrolides are the most commonly used antimicrobials during the exacerbations of chronic obstructive pulmonary disease and community-acquired pneumonia. In their prescription, different aspects such as intrinsic activity, bactericidal effect or their ability to prevent the development of resistance must be taken into account. The latter is related to the PK/PD parameters, the mutant prevention concentration and the so-called selection window. More recently, the potential ecological impact has grown in importance, not only on the intestinal microbiota, but also on the respiratory one. Maintaining the state of eubiosis requires the use of antimicrobials with a low profile of action on anaerobic bacteria. With their use, the resilience of the bacterial populations belonging to the microbiota, the state of resistance of colonization and the collateral damage related to the emergence of resistance to the antimicrobials in pathogens causing the infections and in the bacterial populations integrating the microbiota.

Keywords

References

  1. Antimicrob Agents Chemother. 2005 Aug;49(8):3382-6 [PMID: 16048951]
  2. FEMS Microbiol Rev. 2011 Sep;35(5):977-91 [PMID: 21722146]
  3. Curr Opin Infect Dis. 1998 Apr;11(2):139-45 [PMID: 17033379]
  4. Infect Dis Clin North Am. 2019 Dec;33(4):1087-1103 [PMID: 31668192]
  5. Respiration. 2018;96(5):417-424 [PMID: 30041176]
  6. Pneumonia (Nathan). 2020 Oct 05;12:11 [PMID: 33024653]
  7. Int J Antimicrob Agents. 2006 Sep;28 Suppl 2:S115-27 [PMID: 16904873]
  8. Respirology. 2017 May;22(4):634-650 [PMID: 28342288]
  9. Clin Infect Dis. 2018 Apr 17;66(9):1470-1474 [PMID: 29293890]
  10. Chest. 1998 Apr;113(4 Suppl):249S-255S [PMID: 9552014]
  11. Clin Microbiol Infect. 2021 Apr;27(4):520-531 [PMID: 33418017]
  12. Am J Transplant. 2020 Dec;20(12):3680 [PMID: 33264503]
  13. Open Forum Infect Dis. 2020 Dec 22;7(12):ofaa575 [PMID: 33409334]
  14. ERJ Open Res. 2017 Jun 19;3(2): [PMID: 28656132]
  15. Nat Rev Microbiol. 2021 Feb;19(2):123-132 [PMID: 33024310]
  16. J Thorac Dis. 2020 May;12(5):1811-1823 [PMID: 32642086]
  17. Microorganisms. 2019 Feb 12;7(2): [PMID: 30759805]
  18. Microb Genom. 2019 Oct;5(10): [PMID: 31609685]
  19. Eur J Clin Microbiol Infect Dis. 2008 Aug;27(8):679-83 [PMID: 18299905]
  20. Antimicrob Agents Chemother. 2015 Jan;59(1):461-6 [PMID: 25385097]
  21. Eur Respir J Suppl. 2002 Jul;36:9s-19s [PMID: 12168752]
  22. Respir Med. 2019 Oct;157:1-6 [PMID: 31450162]
  23. Microbiology (Reading). 2010 Nov;156(Pt 11):3216-3223 [PMID: 20705661]
  24. Enferm Infecc Microbiol Clin (Engl Ed). 2021 Jun-Jul;39(6):271-275 [PMID: 34088446]
  25. J Immunol Res. 2020 Jul 31;2020:2340670 [PMID: 32802893]
  26. J Infect. 2019 Dec;79(6):471-489 [PMID: 31629863]
  27. Nat Rev Microbiol. 2017 May;15(5):259-270 [PMID: 28316330]
  28. Arch Bronconeumol (Engl Ed). 2020 Oct;56(10):651-664 [PMID: 32540279]
  29. Clin Infect Dis. 2021 Mar 1;72(5):e65-e75 [PMID: 33196783]
  30. Rev Esp Quimioter. 2019 Dec;32(6):497-515 [PMID: 31795630]
  31. Genome Med. 2020 Sep 28;12(1):82 [PMID: 32988391]
  32. J Chemother. 2004 Dec;16 Suppl 6:63-70 [PMID: 15690686]
  33. J Chemother. 2009 Aug;21(4):378-82 [PMID: 19622454]
  34. Multidiscip Respir Med. 2018 Nov 2;13:40 [PMID: 30410757]
  35. Infection. 2016 Feb;44(1):65-76 [PMID: 26370552]
  36. J Clin Med. 2020 Nov 24;9(12): [PMID: 33255354]
  37. J Antimicrob Chemother. 2015 Feb;70(2):382-95 [PMID: 25266070]
  38. J Antimicrob Chemother. 2017 Jan;72(1):1-18 [PMID: 27659735]
  39. J Clin Microbiol. 2019 Oct 23;57(11): [PMID: 31484701]
  40. Science. 2018 May 18;360(6390):733-738 [PMID: 29773743]
  41. Lancet Respir Med. 2019 Jan;7(1):69-89 [PMID: 30553848]
  42. Drug Resist Updat. 2015 Jul-Aug;21-22:41-59 [PMID: 26304792]
  43. J Glob Antimicrob Resist. 2020 Dec;23:430-438 [PMID: 33176216]
  44. Diagn Microbiol Infect Dis. 2021 Mar;99(3):115246 [PMID: 33253962]
  45. Lancet Infect Dis. 2018 Nov;18(11):1191-1210 [PMID: 30243584]
  46. J Infect. 2013 Dec;67(6):497-515 [PMID: 23973659]
  47. BMJ Glob Health. 2020 Nov;5(11): [PMID: 33239336]
  48. Curr Opin Crit Care. 2020 Oct;26(5):433-441 [PMID: 32739970]
  49. IUBMB Life. 2020 Oct;72(10):2097-2111 [PMID: 32770825]
  50. Int J Chron Obstruct Pulmon Dis. 2017 Jan 13;12:285-290 [PMID: 28144133]
  51. Eur Respir Rev. 2020 Nov 5;29(158): [PMID: 33153991]
  52. Rev Esp Quimioter. 2018 Apr;31(2):186-202 [PMID: 29619807]
  53. Antimicrob Agents Chemother. 2014;58(4):2393-9 [PMID: 24514095]
  54. Clin Microbiol Rev. 2017 Jul;30(3):747-809 [PMID: 28539503]
  55. Int J Mol Sci. 2017 Jun 23;18(7): [PMID: 28644389]
  56. Chest. 2018 Nov;154(5):1202-1212 [PMID: 29959904]
  57. Int J Antimicrob Agents. 2018 Dec;52(6):762-770 [PMID: 30176355]
  58. Clin Microbiol Rev. 2019 Aug 28;32(4): [PMID: 31462403]
  59. Clin Microbiol Infect. 2020 Mar;26(3):313-318 [PMID: 31306794]
  60. Microorganisms. 2021 Feb 28;9(3): [PMID: 33670930]
  61. Rev Esp Quimioter. 2018 Oct;31(5):461-484 [PMID: 30284414]
  62. J Antimicrob Chemother. 2014 Jan;69(1):111-6 [PMID: 23943391]
  63. Curr Drug Targets. 2011 Apr;12(4):521-30 [PMID: 21194403]
  64. Transl Res. 2017 Jan;179:71-83 [PMID: 27392936]
  65. Am J Ther. 2017 May;24(3):e361-e369 [PMID: 28430673]
  66. Front Immunol. 2019 Jan 25;9:3072 [PMID: 30761155]
  67. Microb Genom. 2018 Sep;4(9): [PMID: 30207515]

MeSH Term

Administration, Oral
Anti-Bacterial Agents
COVID-19
Chlamydophila pneumoniae
Community-Acquired Infections
Disease Progression
Drug Resistance, Bacterial
Gastrointestinal Microbiome
Haemophilus influenzae
Humans
Microbial Sensitivity Tests
Moraxella catarrhalis
Mycoplasma pneumoniae
Pseudomonas aeruginosa
Pulmonary Disease, Chronic Obstructive
Respiratory Tract Infections
Staphylococcus aureus
Streptococcus pneumoniae

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0respiratoryresistanceinfectionantimicrobialsmicrobiotamicrobiologicalantimicrobialtreatmentprofilemaylatterdifferentprescriptionaspectsrelatedstateusebacterialpopulationscommunitypointviewempiricaltargetedbasedsensitivityisolatedmicroorganismspossiblemechanismspresentvarygeographicareasaccordingprofilesvaccinationprogramsBeta-lactamantibioticsfluoroquinolonesmacrolidescommonlyusedexacerbationschronicobstructivepulmonarydiseasecommunity-acquiredpneumoniaintrinsicactivitybactericidaleffectabilitypreventdevelopmentmusttakenaccountPK/PDparametersmutantpreventionconcentrationso-calledselectionwindowrecentlypotentialecologicalimpactgrownimportanceintestinalalsooneMaintainingeubiosisrequireslowactionanaerobicbacteriaresiliencebelongingcolonizationcollateraldamageemergencepathogenscausinginfectionsintegrating[CurrentbeyondCOVID-19]acquiredmicrobiologymicrobiomepathogen

Similar Articles

Cited By