Photonic Crystal Optical Parametric Oscillator.

Gabriel Marty, Sylvain Combrié, Fabrice Raineri, Alfredo De Rossi
Author Information
  1. Gabriel Marty: Thales Research and Technology, Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau, France.
  2. Sylvain Combrié: Thales Research and Technology, Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau, France.
  3. Fabrice Raineri: Centre de Nanosciences et de Nanotetchnologies, CNRS, Université Paris Saclay, Palaiseau, France.
  4. Alfredo De Rossi: Thales Research and Technology, Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau, France.

Abstract

We report a new class of Optical Parametric Oscillators, based on a 20-long semiconductor Photonic Crystal Cavity and operating at Telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric oscillation is reached when these high Q modes are thermally tuned into a triply resonant configuration, whereas any other parametric interaction is strongly suppressed. The lowest pump power threshold is estimated to 50 - 70. This source behaves as an ideal degenerate Optical Parametric Oscillator addressing the needs in the field of quantum optical circuits, paving the way to the dense integration of highly efficient nonlinear sources of squeezed light or entangled photons pairs.

References

  1. Science. 2018 Jul 6;361(6397):57-60 [PMID: 29976819]
  2. Opt Lett. 2012 Sep 1;37(17):3738-40 [PMID: 22941008]
  3. Opt Express. 2017 Feb 6;25(3):1769-1777 [PMID: 29519030]
  4. Opt Lett. 2020 Mar 1;45(5):1124-1127 [PMID: 32108786]
  5. Opt Express. 2011 Jun 6;19(12):11916-21 [PMID: 21716425]
  6. Nat Commun. 2020 Mar 12;11(1):1331 [PMID: 32165610]
  7. Nature. 2018 Oct;562(7727):401-405 [PMID: 30297798]
  8. Nature. 2003 Oct 30;425(6961):944-7 [PMID: 14586465]
  9. Phys Rev Lett. 2010 Dec 31;105(26):263904 [PMID: 21231666]
  10. Science. 2018 Aug 10;361(6402): [PMID: 30093576]
  11. Nature. 2019 May;569(7755):208-214 [PMID: 31068721]
  12. Nature. 2020 Jun;582(7812):365-369 [PMID: 32555486]
  13. Phys Rev Lett. 1987 Jun 8;58(23):2486-2489 [PMID: 10034761]
  14. Opt Express. 2004 Mar 8;12(5):823-8 [PMID: 19474891]
  15. Phys Rev Lett. 1987 May 18;58(20):2059-2062 [PMID: 10034639]
  16. Phys Rev Lett. 2004 Aug 20;93(8):083904 [PMID: 15447188]
  17. Nat Phys. 2019;15: [PMID: 31275426]
  18. Opt Lett. 2016 Sep 15;41(18):4273-6 [PMID: 27628375]
  19. Optica. 2019;6(12): [PMID: 34796261]
  20. ACS Photonics. 2018 Oct 17;5(10):3984-3988 [PMID: 30357007]
  21. Nature. 2015 Dec 24;528(7583):534-8 [PMID: 26701054]
  22. Phys Rev Lett. 2020 May 15;124(19):193601 [PMID: 32469562]
  23. Light Sci Appl. 2017 Nov 17;6(11):e17100 [PMID: 30167217]
  24. Nature. 2013 Jun 27;498(7455):470-4 [PMID: 23803846]
  25. Opt Express. 2015 Aug 10;23(16):21527-40 [PMID: 26367998]

Grants

  1. 726420/European Research Council

Word Cloud

Created with Highcharts 10.0.0ParametricOpticalPhotonicCrystalopticalmodesOscillatorreportnewclassOscillatorsbased20-longsemiconductorCavityoperatingTelecomwavelengthsconfinementresultsBraggscatteringcavitycontainsapproximatelyequispacedfrequencyoscillationreachedhighQthermallytunedtriplyresonantconfigurationwhereasparametricinteractionstronglysuppressedlowestpumppowerthresholdestimated50-70sourcebehavesidealdegenerateaddressingneedsfieldquantumcircuitspavingwaydenseintegrationhighlyefficientnonlinearsourcessqueezedlightentangledphotonspairs

Similar Articles

Cited By