MicroRNA-23a-5p regulates cell proliferation, migration and inflammation of TNF-α-stimulated human fibroblast-like MH7A synoviocytes by targeting TLR4 in rheumatoid arthritis.

Xiao Bao, Ling Ma, Chengsong He
Author Information
  1. Xiao Bao: Department of Rheumatology and Immunology, The People's Hospital of De Yang City, Deyang, Sichuan 618000, P.R. China.
  2. Ling Ma: Department of Rheumatology and Immunology, The People's Hospital of De Yang City, Deyang, Sichuan 618000, P.R. China.
  3. Chengsong He: Department of Rheumatology and Immunology, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan 646000, P.R. China.

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial joint inflammation. RA synovial fibroblasts (RASFs) constitute a major cell subset of the RA synovia. MicroRNAs (miRNAs/miRs) have been reported to serve a role in the activation and proliferation of RASFs. The present study aimed to investigate the effects and underlying mechanisms of miR-23a-5p on RA progression. Peripheral blood was collected from patients with RA (n=20) to analyze the expression levels of miR-23a-5p. The effects of miR-23a-5p on cell apoptosis, proliferation and migration in MH7A cells were determined in TNF-α-treated human fibroblast-like synoviocytes (MH7A cells) by flow cytometry, colony formation assay and Transwell assay, respectively. The cell cycle distribution was evaluated using flow cytometry. The binding relationship between miR-23a-5p and toll-like receptor (TLR) 4 was analyzed using a dual luciferase reporter gene assay. ELISA and reverse transcription-quantitative PCR assays were used to detect the levels of the inflammatory factors IL-6, IL-1β and IL-10. The expression levels of apoptosis- and migration-related proteins were analyzed using western blotting. The results of the present study revealed that the expression levels of miR-23a-5p were significantly downregulated in the plasma of patients with RA and in MH7A cells. In addition, the TNF-α-induced increase in the cell proliferative and migratory rates and the production of IL-6 and IL-1β were markedly inhibited following miR-23a-5p overexpression. The TNF-α-induced decreases in MH7A cell apoptosis were also reversed following miR-23a-5p overexpression. Additionally, transfection with miR-23a-5p mimics significantly inhibited the activation of the TLR4/NF-κB signaling pathway in TNF-α-treated MH7A cells by targeting TLR4. Notably, TLR4 overexpression weakened the effects of miR-23a-5p mimic on cell proliferation, apoptosis, migration, inflammation and the TLR4/NF-κB signaling pathway in TNF-α-induced MH7A cells. In conclusion, the findings of the present study indicated that the miR-23a-5p/TLR4/NF-κB axis may serve as a promising target for RA diagnosis and treatment.

Keywords

References

  1. J Orthop Res. 2018 Jan;36(1):33-51 [PMID: 29194736]
  2. Cell Signal. 2020 Jun;70:109504 [PMID: 31857240]
  3. J Immunol. 2006 Jul 1;177(1):322-32 [PMID: 16785528]
  4. Oncotarget. 2015 Apr 20;6(11):8474-90 [PMID: 25893379]
  5. Diagnostics (Basel). 2019 Aug 18;9(3): [PMID: 31426562]
  6. Sci Rep. 2015 Sep 18;5:14143 [PMID: 26382856]
  7. Exp Cell Res. 2017 May 15;354(2):71-77 [PMID: 28327409]
  8. Pathol Int. 2011 Feb;61(2):59-66 [PMID: 21255181]
  9. Apoptosis. 2018 Dec;23(11-12):607-615 [PMID: 30167920]
  10. Oncotarget. 2018 Jan 8;9(35):23944-23959 [PMID: 29844864]
  11. J Mol Cell Cardiol. 2018 Oct;123:139-149 [PMID: 30227118]
  12. Cancers (Basel). 2018 Dec 20;11(1): [PMID: 30577536]
  13. Atherosclerosis. 2016 Jan;244:211-5 [PMID: 26687466]
  14. Autoimmun Rev. 2019 Nov;18(11):102391 [PMID: 31520804]
  15. J Cell Biochem. 2018 Jan 6;: [PMID: 29315763]
  16. Biosci Rep. 2018 Jul 31;38(4): [PMID: 29853534]
  17. Cell Death Dis. 2019 Sep 30;10(10):736 [PMID: 31570693]
  18. Nat Rev Drug Discov. 2017 Mar;16(3):203-222 [PMID: 28209991]
  19. Sci Rep. 2016 Jun 20;6:28006 [PMID: 27320175]
  20. Front Immunol. 2018 Sep 26;9:2228 [PMID: 30319663]
  21. Mol Med Rep. 2020 Jun;21(6):2395-2404 [PMID: 32323783]
  22. Eur Rev Med Pharmacol Sci. 2018 Jul;22(14):4581-4588 [PMID: 30058700]
  23. Lancet. 2016 Oct 22;388(10055):2023-2038 [PMID: 27156434]
  24. Int J Rheum Dis. 2019 Apr;22(4):646-653 [PMID: 30358109]
  25. Arthritis Rheum. 2008 May;58(5):1284-92 [PMID: 18438844]
  26. Gene. 2019 Sep 5;712:143911 [PMID: 31176730]
  27. Eur Rev Med Pharmacol Sci. 2017 Oct;21(17):3886-3893 [PMID: 28975975]
  28. Mol Med Rep. 2015 Aug;12(2):2395-401 [PMID: 25891943]
  29. Int J Rheum Dis. 2017 Nov;20(11):1631-1637 [PMID: 29105307]
  30. Malays J Pathol. 2019 Dec;41(3):259-265 [PMID: 31901910]
  31. Endocr Metab Immune Disord Drug Targets. 2015;15(2):129-34 [PMID: 25772178]
  32. Int Immunopharmacol. 2018 Jan;54:169-176 [PMID: 29149705]
  33. Mol Med Rep. 2018 Dec;18(6):5256-5260 [PMID: 30280185]
  34. Am J Transl Res. 2019 May 15;11(5):2983-2994 [PMID: 31217868]
  35. Mediators Inflamm. 2018 Nov 26;2018:1756494 [PMID: 30598636]
  36. Cell Biochem Funct. 2020 Dec;38(8):1047-1055 [PMID: 32519337]
  37. Eur J Immunol. 2016 Dec;46(12):2719-2729 [PMID: 27701733]
  38. Int J Clin Exp Pathol. 2015 Nov 01;8(11):14562-7 [PMID: 26823778]
  39. Cell Physiol Biochem. 2018;47(3):1217-1229 [PMID: 29913461]
  40. Int J Med Sci. 2018 Jul 13;15(11):1129-1142 [PMID: 30123050]
  41. Med Sci Monit. 2015 Dec 24;21:4030-8 [PMID: 26704133]
  42. Clin Exp Rheumatol. 2015 Jul-Aug;33(4):551-8 [PMID: 26203933]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. Cell Death Dis. 2017 Jan 19;8(1):e2565 [PMID: 28102843]
  45. J Biochem Mol Toxicol. 2020 Oct;34(10):e22551 [PMID: 32613688]
  46. Hum Immunol. 2010 Feb;71(2):206-11 [PMID: 19931339]
  47. Cell Mol Biol Lett. 2019 Apr 19;24:8 [PMID: 31019537]
  48. Front Immunol. 2019 Sep 18;10:2218 [PMID: 31620132]
  49. Biochem Biophys Res Commun. 2017 Oct 14;492(2):231-235 [PMID: 28822766]
  50. Egypt J Immunol. 2019 Jul;26(2):19-29 [PMID: 31926492]
  51. Arthritis Rheum. 2010 Sep;62(9):2569-81 [PMID: 20872595]
  52. Ann Rheum Dis. 2018 Nov;77(11):1644-1652 [PMID: 30045854]
  53. Exp Mol Med. 2017 Aug 4;49(8):e363 [PMID: 28775366]
  54. Mol Med Rep. 2017 Aug;16(2):2309-2317 [PMID: 28656260]
  55. Int J Clin Exp Pathol. 2019 May 01;12(5):1835-1845 [PMID: 31934007]
  56. J Immunol. 2018 Oct 15;201(8):2472-2482 [PMID: 30224512]
  57. PLoS Genet. 2017 Jul 13;13(7):e1006887 [PMID: 28704388]
  58. Reumatologia. 2019;57(2):72-77 [PMID: 31130744]
  59. Gene. 2013 Sep 25;527(2):440-7 [PMID: 23830938]

Word Cloud

Created with Highcharts 10.0.0miR-23a-5pMH7ARAcellcellsproliferationlevelsarthritisinflammationpresentstudyeffectsexpressionapoptosismigrationassayusingTNF-α-inducedoverexpressionTLR4inflammatorysynovialRASFsserveactivationpatientsTNF-α-treatedhumanfibroblast-likesynoviocytesflowcytometrytoll-likereceptor4analyzedIL-6IL-1βsignificantlyinhibitedfollowingTLR4/NF-κBsignalingpathwaytargetingrheumatoidRheumatoidchronicdiseasecharacterizedjointfibroblastsconstitutemajorsubsetsynoviaMicroRNAsmiRNAs/miRsreportedroleaimedinvestigateunderlyingmechanismsprogressionPeripheralbloodcollectedn=20analyzedeterminedcolonyformationTranswellrespectivelycycledistributionevaluatedbindingrelationshipTLRdualluciferasereportergeneELISAreversetranscription-quantitativePCRassaysuseddetectfactorsIL-10apoptosis-migration-relatedproteinswesternblottingresultsrevealeddownregulatedplasmaadditionincreaseproliferativemigratoryratesproductionmarkedlydecreasesalsoreversedAdditionallytransfectionmimicsNotablyweakenedmimicconclusionfindingsindicatedmiR-23a-5p/TLR4/NF-κBaxismaypromisingtargetdiagnosistreatmentMicroRNA-23a-5pregulatesTNF-α-stimulatedmicroRNA-23a-5p

Similar Articles

Cited By