Targeting Glioma Stem Cells.

Yagmur Muftuoglu, Frank Pajonk
Author Information
  1. Yagmur Muftuoglu: Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 300 Stein Plaza Driveway, Suite 420, Los Angeles, CA 90095-1714, USA.
  2. Frank Pajonk: Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1714, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA. Electronic address: pajonk@ucla.edu.

Abstract

Only a small fraction of the tumor cell population, Glioma-initiating cells (GICs) help glioblastoma propagate, invade, evade immune recognition, repair DNA in response to radiation more efficiently, remodel the microenvironment for optimal growth, and actively pump out chemotherapies. Recent data hint that efforts toward GIC characterization and quantification can help predict patient outcomes, and yet the different subpopulations of GICs remain incompletely understood. A better understanding of GIC subtypes and functions proves critical for engineering targeted therapies. Challenges for doing so are discussed, and dopamine receptor antagonists are introduced as new means to enhance the efficacy of the current standard-of-care against GICs.

Keywords

References

  1. Cell Stem Cell. 2010 Sep 3;7(3):279-82 [PMID: 20804964]
  2. Trends Mol Med. 2011 Jun;17(6):301-312 [PMID: 21411370]
  3. Science. 1976 Oct 1;194(4260):23-8 [PMID: 959840]
  4. J Exp Clin Cancer Res. 2015 May 14;34:44 [PMID: 25967234]
  5. Int J Radiat Oncol Biol Phys. 2014 Nov 15;90(4):877-85 [PMID: 25257812]
  6. Neurosurgery. 2008 Feb;62(2):505-14; discussion 514-5 [PMID: 18382330]
  7. N Engl J Med. 2005 Mar 10;352(10):987-96 [PMID: 15758009]
  8. Nature. 2006 Dec 7;444(7120):756-60 [PMID: 17051156]
  9. J Neurooncol. 2019 Apr;142(2):231-240 [PMID: 30694423]
  10. Mol Cancer Ther. 2012 Sep;11(9):1863-72 [PMID: 22772423]
  11. Histol Histopathol. 2004 Oct;19(4):1261-75 [PMID: 15375770]
  12. Neuro Oncol. 2017 Apr 1;19(4):546-557 [PMID: 28201779]
  13. J Immunol Methods. 2009 Aug 15;347(1-2):70-8 [PMID: 19567251]
  14. Nature. 2008 Dec 4;456(7222):593-8 [PMID: 19052619]
  15. Cell Cycle. 2009 Oct 15;8(20):3274-84 [PMID: 19770585]
  16. Cell Death Differ. 2006 Jul;13(7):1238-41 [PMID: 16456578]
  17. PLoS One. 2008;3(11):e3655 [PMID: 18985161]
  18. Int J Mol Sci. 2017 Nov 18;18(11): [PMID: 29156557]
  19. J Natl Cancer Inst. 2006 Dec 20;98(24):1777-85 [PMID: 17179479]
  20. Cancer Cell. 2009 Jun 2;15(6):501-13 [PMID: 19477429]
  21. Cell Stem Cell. 2010 May 7;6(5):421-32 [PMID: 20452317]
  22. J Natl Cancer Inst. 2008 May 7;100(9):672-9 [PMID: 18445819]
  23. Clin Cancer Res. 2008 Jan 1;14(1):123-9 [PMID: 18172261]
  24. Nat Genet. 2016 Jul;48(7):768-76 [PMID: 27270107]
  25. Curr Pharm Des. 2014;20(1):66-72 [PMID: 23530497]
  26. Neuro Oncol. 2010 Jul;12(7):756-60 [PMID: 20388697]
  27. Int J Radiat Oncol Biol Phys. 1979 Oct;5(10):1725-31 [PMID: 231022]
  28. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 [PMID: 12629218]
  29. Cancer Res. 2003 Sep 15;63(18):5821-8 [PMID: 14522905]
  30. Neoplasia. 2020 Dec;22(12):725-744 [PMID: 33142238]
  31. Expert Rev Neurother. 2013 May;13(5):545-55 [PMID: 23621311]
  32. Cell Stem Cell. 2009 May 8;4(5):440-52 [PMID: 19427293]
  33. Oncol Lett. 2015 Dec;10(6):3399-3406 [PMID: 26788141]
  34. Cell. 2014 Jan 30;156(3):603-616 [PMID: 24485463]
  35. Genes Dis. 2015 Jun;2(2):152-163 [PMID: 26137500]
  36. J Neurooncol. 2017 Sep;134(3):505-512 [PMID: 28233083]
  37. PLoS One. 2013 May 21;8(5):e59558 [PMID: 23704872]
  38. Oncologist. 2020 Dec 7;: [PMID: 33284507]
  39. Cancer Cell. 2007 Jan;11(1):69-82 [PMID: 17222791]
  40. Cell. 2013 Aug 1;154(3):484-9 [PMID: 23911316]
  41. J Cell Biol. 1994 Feb;124(4):619-26 [PMID: 8106557]
  42. Nature. 2004 Nov 18;432(7015):396-401 [PMID: 15549107]
  43. Lancet Oncol. 2009 May;10(5):459-66 [PMID: 19269895]
  44. Radiat Oncol J. 2019 Mar;37(1):13-21 [PMID: 30947476]
  45. Clin Cancer Res. 2016 Oct 1;22(19):4786-4796 [PMID: 27154916]
  46. J Natl Cancer Inst. 2009 Mar 4;101(5):350-9 [PMID: 19244169]
  47. Cancer Res. 2014 Aug 15;74(16):4482-92 [PMID: 24962027]
  48. Glia. 2012 Nov;60(11):1785-800 [PMID: 22951908]
  49. Cancer Metastasis Rev. 1994 Jun;13(2):139-68 [PMID: 7923547]
  50. Radiother Oncol. 2002 Sep;64(3):259-73 [PMID: 12242114]
  51. Biochem Biophys Res Commun. 2013 Apr 19;433(4):496-501 [PMID: 23524267]
  52. Int J Radiat Oncol Biol Phys. 2019 Jan 1;103(1):195-207 [PMID: 30196056]
  53. Clin Cancer Res. 2010 Feb 1;16(3):800-13 [PMID: 20103663]
  54. Brain Pathol. 2010 Jan;20(1):211-21 [PMID: 19243384]
  55. Transl Oncol. 2009 Dec;2(4):247-57 [PMID: 19956386]
  56. Cancer Invest. 2009 Nov;27(9):901-8 [PMID: 19832037]
  57. Neuro Oncol. 2009 Jun;11(3):281-91 [PMID: 18952979]
  58. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14228-33 [PMID: 15381773]
  59. Blood. 1997 Dec 15;90(12):5002-12 [PMID: 9389720]
  60. J Neurosurg. 2011 Jul;115(1):3-8 [PMID: 21417701]
  61. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15178-83 [PMID: 14645703]
  62. Nature. 2001 Nov 1;414(6859):105-11 [PMID: 11689955]
  63. J Exp Clin Cancer Res. 2008 Dec 24;27:85 [PMID: 19108713]
  64. PLoS One. 2011;6(9):e24807 [PMID: 21961046]
  65. Mol Cancer. 2006 Dec 02;5:67 [PMID: 17140455]
  66. Cell Mol Life Sci. 2018 Feb;75(3):385-402 [PMID: 28821904]
  67. Mol Cancer Ther. 2016 Dec;15(12):3064-3076 [PMID: 27765847]
  68. Radiother Oncol. 2009 Jul;92(1):1-3 [PMID: 19539125]
  69. Cell Stem Cell. 2019 Aug 1;25(2):258-272.e9 [PMID: 31374198]
  70. Cancer Cell Int. 2016 Jul 26;16:58 [PMID: 27462186]
  71. Curr Top Microbiol Immunol. 2010;345:21-30 [PMID: 20582533]
  72. Proc Natl Acad Sci U S A. 2020 May 19;117(20):11085-11096 [PMID: 32358191]
  73. Adv Exp Med Biol. 2017;1041:119-140 [PMID: 29204831]

Grants

  1. P50 CA211015/NCI NIH HHS
  2. R01 CA200234/NCI NIH HHS

MeSH Term

Brain Neoplasms
Glioblastoma
Glioma
Humans
Neoplastic Stem Cells
Tumor Microenvironment

Word Cloud

Created with Highcharts 10.0.0GICscellshelpGICsmallfractiontumorcellpopulationglioma-initiatingglioblastomapropagateinvadeevadeimmunerecognitionrepairDNAresponseradiationefficientlyremodelmicroenvironmentoptimalgrowthactivelypumpchemotherapiesRecentdatahinteffortstowardcharacterizationquantificationcanpredictpatientoutcomesyetdifferentsubpopulationsremainincompletelyunderstoodbetterunderstandingsubtypesfunctionsprovescriticalengineeringtargetedtherapiesChallengesdiscusseddopaminereceptorantagonistsintroducednewmeansenhanceefficacycurrentstandard-of-careTargetingGliomaStemCellsGlioblastomaGlioblastoma-initiatingIntratumoralheterogeneityPlasticity

Similar Articles

Cited By (6)