A statistical method for identifying different rules of interaction between individuals in moving animal groups.

T M Schaerf, J E Herbert-Read, A J W Ward
Author Information
  1. T M Schaerf: School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia.
  2. J E Herbert-Read: Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
  3. A J W Ward: Animal Behaviour Lab, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.

Abstract

The emergent patterns of collective motion are thought to arise from application of individual-level rules that govern how individuals adjust their velocity as a function of the relative position and behaviours of their neighbours. Empirical studies have sought to determine such rules of interaction applied by 'average' individuals by aggregating data from multiple individuals across multiple trajectory sets. In reality, some individuals within a group may interact differently from others, and such individual differences can have an effect on overall group movement. However, comparisons of rules of interaction used by individuals in different contexts have been largely qualitative. Here we introduce a set of randomization methods designed to determine statistical differences in the rules of interaction between individuals. We apply these methods to a case study of leaders and followers in pairs of freely exploring eastern mosquitofish (). We find that each of the randomization methods is reliable in terms of: repeatability of -values, consistency in identification of significant differences and similarity between distributions of randomization-based test statistics. We observe convergence of the distributions of randomization-based test statistics across repeat calculations, and resolution of any ambiguities regarding significant differences as the number of randomization iterations increases.

Keywords

References

  1. PLoS Comput Biol. 2019 Sep 13;15(9):e1007354 [PMID: 31518357]
  2. J Phys Condens Matter. 2009 Mar 4;21(9):095401 [PMID: 21817387]
  3. Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 [PMID: 10060237]
  4. Curr Biol. 2009 Feb 10;19(3):248-52 [PMID: 19185497]
  5. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80 [PMID: 20616032]
  6. PLoS One. 2020 Dec 9;15(12):e0243631 [PMID: 33296438]
  7. J Exp Biol. 2008 Oct;211(Pt 20):3287-95 [PMID: 18840663]
  8. Phys Rev Lett. 2006 Mar 17;96(10):104302 [PMID: 16605738]
  9. PLoS Comput Biol. 2018 Jan 11;14(1):e1005933 [PMID: 29324853]
  10. J Math Biol. 2015 Nov;71(5):1081-105 [PMID: 25358499]
  11. Sci Adv. 2017 Jun 23;3(6):e1603201 [PMID: 28691088]
  12. Trends Ecol Evol. 2020 Mar;35(3):278-291 [PMID: 31879039]
  13. Proc Biol Sci. 2012 Dec 05;280(1752):20122564 [PMID: 23222452]
  14. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 14;375(1807):20190380 [PMID: 32713309]
  15. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31 [PMID: 22065759]
  16. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7 [PMID: 18227508]
  17. Nature. 2010 Apr 8;464(7290):890-3 [PMID: 20376149]
  18. J Theor Biol. 2002 Sep 7;218(1):1-11 [PMID: 12297066]
  19. J Theor Biol. 2018 Apr 14;443:39-51 [PMID: 29366823]
  20. PLoS Comput Biol. 2013;9(2):e1002915 [PMID: 23468605]
  21. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10149-10154 [PMID: 28874581]
  22. Curr Biol. 2017 Sep 25;27(18):2862-2868.e7 [PMID: 28889975]
  23. R Soc Open Sci. 2018 Dec 12;5(12):181132 [PMID: 30662732]
  24. Curr Biol. 2013 Sep 9;23(17):R709-11 [PMID: 24028946]
  25. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5 [PMID: 21795604]
  26. Proc Biol Sci. 2019 May 29;286(1903):20190891 [PMID: 31138077]
  27. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4282-4286 [PMID: 9963139]
  28. PLoS Comput Biol. 2012;8(9):e1002678 [PMID: 23028277]

MeSH Term

Animals
Behavior, Animal
Cyprinodontiformes
Movement
Random Allocation
Social Behavior

Word Cloud

Created with Highcharts 10.0.0individualsrulesinteractiondifferencesrandomizationmethodscollectivemotiondeterminemultipleacrossgroupdifferentstatisticalleadersfollowerssignificantdistributionsrandomization-basedteststatisticsemergentpatternsthoughtariseapplicationindividual-levelgovernadjustvelocityfunctionrelativepositionbehavioursneighboursEmpiricalstudiessoughtapplied'average'aggregatingdatatrajectorysetsrealitywithinmayinteractdifferentlyothersindividualcaneffectoverallmovementHowevercomparisonsusedcontextslargelyqualitativeintroducesetdesignedapplycasestudypairsfreelyexploringeasternmosquitofishfindreliabletermsof:repeatability-valuesconsistencyidentificationsimilarityobserveconvergencerepeatcalculationsresolutionambiguitiesregardingnumberiterationsincreasesmethodidentifyingmovinganimalgroupsGambusiaholbrooki

Similar Articles

Cited By (12)