AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides.

Colin M Van Oort, Jonathon B Ferrell, Jacob M Remington, Safwan Wshah, Jianing Li
Author Information
  1. Colin M Van Oort: Department of Computer Science, University of Vermont, Burlington, Vermont 05405, United States.
  2. Jonathon B Ferrell: Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States.
  3. Jacob M Remington: Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States.
  4. Safwan Wshah: Department of Computer Science, University of Vermont, Burlington, Vermont 05405, United States.
  5. Jianing Li: Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States. ORCID

Abstract

Antibiotic resistance is a critical public health problem. Each year ∼2.8 million resistant infections lead to more than 35 000 deaths in the U.S. alone. Antimicrobial peptides (AMPs) show promise in treating resistant infections. However, applications of known AMPs have encountered issues in development, production, and shelf-life. To drive the development of AMP-based treatments, it is necessary to create design approaches with higher precision and selectivity toward resistant targets. Previously, we developed AMPGAN and obtained proof-of-concept evidence for the generative approach to design AMPs with experimental validation. Building on the success of AMPGAN, we present AMPGAN v2, a bidirectional conditional generative adversarial network (BiCGAN)-based approach for rational AMP design. AMPGAN v2 uses generator-discriminator dynamics to learn data-driven priors and controls generation using conditioning variables. The bidirectional component, implemented using a learned encoder to map data samples into the latent space of the generator, aids iterative manipulation of candidate peptides. These elements allow AMPGAN v2 to generate candidates that are novel, diverse, and tailored for specific applications, making it an efficient AMP design tool.

References

  1. Nature. 2006 Oct 19;443(7113):867-9 [PMID: 17051220]
  2. Nucleic Acids Res. 1984 Mar 12;12(5):2561-8 [PMID: 6200832]
  3. Nucleic Acids Res. 2016 Jan 4;44(D1):D1104-12 [PMID: 26578581]
  4. Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701 [PMID: 33390682]
  5. J Biol Chem. 2018 Mar 9;293(10):3492-3509 [PMID: 29259134]
  6. Bioinformatics. 2017 Sep 1;33(17):2753-2755 [PMID: 28472272]
  7. Front Chem. 2018 Jun 05;6:204 [PMID: 29922648]
  8. Biotechnol Adv. 2018 Mar - Apr;36(2):415-429 [PMID: 29330093]
  9. Sci Rep. 2019 Mar 4;9(1):3331 [PMID: 30833614]
  10. Nucleic Acids Res. 2010 Jan;38(Database issue):D774-80 [PMID: 19923233]
  11. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  12. Nat Commun. 2019 Oct 4;10(1):4538 [PMID: 31586049]
  13. Biochem Pharmacol. 2017 Jun 1;133:117-138 [PMID: 27663838]
  14. J Biol Chem. 2006 Mar 3;281(9):5357-63 [PMID: 16339140]
  15. Mol Inform. 2018 Jan;37(1-2): [PMID: 29235269]
  16. Anal Biochem. 2013 May 15;436(2):168-77 [PMID: 23395824]
  17. PLoS Comput Biol. 2021 Feb 26;17(2):e1008736 [PMID: 33635868]
  18. Bioinformatics. 2009 Jun 1;25(11):1422-3 [PMID: 19304878]
  19. Front Microbiol. 2018 Oct 26;9:2551 [PMID: 30416494]
  20. Bioinformatics. 2011 Oct 15;27(20):2812-9 [PMID: 21873639]
  21. FEMS Microbiol Lett. 2014 Aug;357(1):63-8 [PMID: 24888447]
  22. Curr Opin Pharmacol. 2006 Oct;6(5):468-72 [PMID: 16890021]
  23. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 [PMID: 30395287]
  24. PLoS One. 2018 Jun 1;13(6):e0196829 [PMID: 29856745]
  25. Int J Antimicrob Agents. 2004 Dec;24(6):536-47 [PMID: 15555874]
  26. Front Microbiol. 2019 Nov 28;10:2740 [PMID: 31849888]
  27. Front Cell Infect Microbiol. 2019 Apr 30;9:128 [PMID: 31114762]
  28. Bioinformatics. 2007 May 1;23(9):1148-55 [PMID: 17341497]
  29. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1717-24 [PMID: 26729502]
  30. Bioinformatics. 2013 May 1;29(9):1120-6 [PMID: 23505299]
  31. ACS Omega. 2020 Aug 28;5(36):22847-22851 [PMID: 32954133]
  32. BioDrugs. 2003;17(4):233-40 [PMID: 12899640]
  33. Nat Rev Mol Cell Biol. 2006 Jan;7(1):68-73 [PMID: 16493414]
  34. J Mol Biol. 1982 Dec 15;162(3):705-8 [PMID: 7166760]
  35. Antimicrob Agents Chemother. 2001 May;45(5):1558-60 [PMID: 11302828]
  36. Nat Biotechnol. 2005 Aug;23(8):1008-12 [PMID: 16041366]
  37. Future Sci OA. 2017 Mar 24;3(2):FSO171 [PMID: 28670463]
  38. Mol Pharm. 2017 Sep 5;14(9):3098-3104 [PMID: 28703000]
  39. Nat Microbiol. 2018 Jun;3(6):718-731 [PMID: 29795541]
  40. Nucleic Acids Res. 2014 Jan;42(Database issue):D1147-53 [PMID: 24285301]
  41. Cells. 2019 Feb 03;8(2): [PMID: 30717470]
  42. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  43. PLoS One. 2012;7(10):e45012 [PMID: 23056189]
  44. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]

Grants

  1. R01 GM129431/NIGMS NIH HHS

MeSH Term

Machine Learning
Peptides
Pore Forming Cytotoxic Proteins

Chemicals

Peptides
Pore Forming Cytotoxic Proteins

Word Cloud

Created with Highcharts 10.0.0AMPGANdesignresistantAMPsv2infectionsAntimicrobialpeptidesapplicationsdevelopmentgenerativeapproachbidirectionalAMPusingAntibioticresistancecriticalpublichealthproblemyear∼28millionlead35 000deathsUSaloneshowpromisetreatingHoweverknownencounteredissuesproductionshelf-lifedriveAMP-basedtreatmentsnecessarycreateapproacheshigherprecisionselectivitytowardtargetsPreviouslydevelopedobtainedproof-of-conceptevidenceexperimentalvalidationBuildingsuccesspresentconditionaladversarialnetworkBiCGAN-basedrationalusesgenerator-discriminatordynamicslearndata-drivenpriorscontrolsgenerationconditioningvariablescomponentimplementedlearnedencodermapdatasampleslatentspacegeneratoraidsiterativemanipulationcandidateelementsallowgeneratecandidatesnoveldiversetailoredspecificmakingefficienttoolv2:MachineLearning-GuidedDesignPeptides

Similar Articles

Cited By (38)