Longitudinal MRI study after carbon ion and photon irradiation: shorter latency time for myelopathy is not associated with differential morphological changes.

Thomas Welzel, Alina L Bendinger, Christin Glowa, Inna Babushkina, Manfred Jugold, Peter Peschke, Jürgen Debus, Christian P Karger, Maria Saager
Author Information
  1. Thomas Welzel: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  2. Alina L Bendinger: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany. a.bendinger@dkfz.de.
  3. Christin Glowa: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  4. Inna Babushkina: Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  5. Manfred Jugold: Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  6. Peter Peschke: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  7. Jürgen Debus: Department of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany.
  8. Christian P Karger: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  9. Maria Saager: Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.

Abstract

BACKGROUND: Radiation-induced myelopathy is a severe and irreversible complication that occurs after a long symptom-free latency time if the spinal cord was exposed to a significant irradiation dose during tumor treatment. As carbon ions are increasingly investigated for tumor treatment in clinical trials, their effect on normal tissue needs further investigation to assure safety of patient treatments. Magnetic resonance imaging (MRI)-visible morphological alterations could serve as predictive markers for medicinal interventions to avoid severe side effects. Thus, MRI-visible morphological alterations in the rat spinal cord after high dose photon and carbon ion irradiation and their latency times were investigated.
METHODS: Rats whose spinal cords were irradiated with iso-effective high photon (n = 8) or carbon ion (n = 8) doses as well as sham-treated control animals (n = 6) underwent frequent MRI measurements until they developed radiation-induced myelopathy (paresis II). MR images were analyzed for morphological alterations and animals were regularly tested for neurological deficits. In addition, histological analysis was performed of animals suffering from paresis II compared to controls.
RESULTS: For both beam modalities, first morphological alterations occurred outside the spinal cord (bone marrow conversion, contrast agent accumulation in the musculature ventral and dorsal to the spinal cord) followed by morphological alterations inside the spinal cord (edema, syrinx, contrast agent accumulation) and eventually neurological alterations (paresis I and II). Latency times were significantly shorter after carbon ions as compared to photon irradiation.
CONCLUSIONS: Irradiation of the rat spinal cord with photon or carbon ion doses that lead to 100% myelopathy induced a comparable fixed sequence of MRI-visible morphological alterations and neurological distortions. However, at least in the animal model used in this study, the observed MRI-visible morphological alterations in the spinal cord are not suited as predictive markers to identify animals that will develop myelopathy as the time between MRI-visible alterations and the occurrence of myelopathy is too short to intervene with protective or mitigative drugs.

Keywords

References

  1. Neuropathology. 2001 Dec;21(4):247-65 [PMID: 11837531]
  2. Int J Radiat Oncol Biol Phys. 2003 Nov 15;57(4):1093-100 [PMID: 14575841]
  3. Radiother Oncol. 2015 Jan;114(1):96-103 [PMID: 25465731]
  4. Radiology. 1988 Sep;168(3):679-93 [PMID: 3043546]
  5. J Neuropathol Exp Neurol. 1999 Oct;58(10):1051-60 [PMID: 10515228]
  6. Radiat Oncol. 2020 Jan 3;15(1):6 [PMID: 31900185]
  7. Int J Radiat Oncol Biol Phys. 2014 Sep 1;90(1):63-70 [PMID: 24998894]
  8. Neurol Clin. 2010 Feb;28(1):217-34 [PMID: 19932383]
  9. Br J Radiol. 1974 Jul;47(559):393-8 [PMID: 4136850]
  10. Radiat Oncol. 2018 Jan 11;13(1):5 [PMID: 29325596]
  11. Radiat Res. 2013 Jul;180(1):100-9 [PMID: 23682596]
  12. Cancer. 2018 Dec 1;124(23):4467-4476 [PMID: 30307603]
  13. Int Wound J. 2005 Jun;2(2):112-27 [PMID: 16722862]
  14. Cancer Lett. 2016 Aug 10;378(2):97-103 [PMID: 27224892]
  15. Eur Radiol. 1997;7(3):400-4 [PMID: 9087365]
  16. Radiat Res. 2000 Apr;153(4):357-70 [PMID: 10798963]
  17. MAGMA. 2004 Dec;17(3-6):303-12 [PMID: 15614513]
  18. Mutat Res. 2011 Jun 3;711(1-2):150-7 [PMID: 21376738]
  19. PLoS One. 2013 Jul 22;8(7):e68762 [PMID: 23894340]
  20. PLoS One. 2020 May 22;15(5):e0233258 [PMID: 32442228]
  21. Br J Cancer Suppl. 1986;7:207-17 [PMID: 3521702]
  22. Radiology. 2009 Feb;250(2):387-97 [PMID: 19037019]
  23. J Radiat Res. 2020 Sep 8;61(5):791-798 [PMID: 32657322]
  24. Acta Oncol. 2017 Nov;56(11):1387-1391 [PMID: 28830292]
  25. Acta Oncol. 2012 Mar;51(3):409-11 [PMID: 22060135]
  26. Int J Radiat Oncol Biol Phys. 2006 Dec 1;66(5):1488-97 [PMID: 17126208]
  27. J Neuroimmunol. 1989 Feb;21(2-3):241-8 [PMID: 2783587]
  28. Sci Rep. 2016 Jan 12;6:19216 [PMID: 26755422]
  29. Int J Radiat Oncol Biol Phys. 1995 Mar 30;31(5):1093-112 [PMID: 7677836]
  30. Radiat Prot Dosimetry. 2016 Dec;172(1-3):302-310 [PMID: 27542813]
  31. Eur Radiol. 2007 Mar;17(3):743-61 [PMID: 17021706]
  32. Radiat Res. 1982 Jan;89(1):176-93 [PMID: 6121355]
  33. Radiat Res. 1998 Sep;150(3):304-15 [PMID: 9728660]
  34. Radiat Res. 2003 Nov;160(5):536-42 [PMID: 14565829]

Grants

  1. KFO 214/Deutsche Forschungsgemeinschaft
  2. 111434/Deutsche Krebshilfe
  3. 70112975/Deutsche Krebshilfe

MeSH Term

Animals
Female
Heavy Ion Radiotherapy
Magnetic Resonance Imaging
Photons
Radiation Injuries
Rats
Rats, Sprague-Dawley
Reaction Time
Skin
Spinal Cord
Spinal Cord Diseases

Word Cloud

Created with Highcharts 10.0.0spinalalterationscordmorphologicalmyelopathycarbonphotonionirradiationMRI-visibleanimalslatencytimeMRIparesisIIneurologicalseveredosetumortreatmentionsinvestigatedMagneticresonanceimagingpredictivemarkerseffectsrathightimesn = 8dosescomparedcontrastagentaccumulationshorterstudyBACKGROUND:Radiation-inducedirreversiblecomplicationoccurslongsymptom-freeexposedsignificantincreasinglyclinicaltrialseffectnormaltissueneedsinvestigationassuresafetypatienttreatments-visibleservemedicinalinterventionsavoidsideThusMETHODS:Ratswhosecordsirradiatediso-effectivewellsham-treatedcontroln = 6underwentfrequentmeasurementsdevelopedradiation-inducedMRimagesanalyzedregularlytesteddeficitsadditionhistologicalanalysisperformedsufferingcontrolsRESULTS:beammodalitiesfirstoccurredoutsidebonemarrowconversionmusculatureventraldorsalfollowedinsideedemasyrinxeventuallyLatencysignificantlyCONCLUSIONS:Irradiationlead100%inducedcomparablefixedsequencedistortionsHoweverleastanimalmodelusedobservedsuitedidentifywilldevelopoccurrenceshortinterveneprotectivemitigativedrugsLongitudinalirradiation:associateddifferentialchangesCarbonCervicalLateradiationMyelopathy

Similar Articles

Cited By