Interpreting blood GLUcose data with R package iglu.
Steven Broll, Jacek Urbanek, David Buchanan, Elizabeth Chun, John Muschelli, Naresh M Punjabi, Irina Gaynanova
Author Information
Steven Broll: Department of Statistics, Texas A&M University, College Station, TX, United States of America.
Jacek Urbanek: School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America.
David Buchanan: Department of Statistics, Texas A&M University, College Station, TX, United States of America.
Elizabeth Chun: Department of Biology, Texas A&M University, College Station, TX, United States of America.
John Muschelli: Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America.
Naresh M Punjabi: School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America.
Irina Gaynanova: Department of Statistics, Texas A&M University, College Station, TX, United States of America. ORCID
中文译文
English
Continuous Glucose Monitoring (CGM) data play an increasing role in clinical practice as they provide detailed quantification of blood glucose levels during the entire 24-hour period. The R package iglu implements a wide range of CGM-derived metrics for measuring glucose control and glucose variability. The package also allows one to visualize CGM data using time-series and lasagna plots. A distinct advantage of iglu is that it comes with a point-and-click graphical user interface (GUI) which makes the package widely accessible to users regardless of their programming experience. Thus, the open-source and easy to use iglu package will help advance CGM research and CGM data analyses. R package iglu is publicly available on CRAN and at https://github.com/irinagain/iglu.
Diabetes Care. 2008 Aug;31(8):1473-8
[PMID: 18540046 ]
Acta Med Scand. 1965 Jan;177:95-102
[PMID: 14251860 ]
Horm Metab Res. 1995 Jan;27(1):41-2
[PMID: 7729793 ]
J Diabetes Sci Technol. 2009 Nov 01;3(6):1395-401
[PMID: 20144394 ]
J Diabetes Sci Technol. 2015 Jul 31;10(1):119-24
[PMID: 26232371 ]
Diabetes Technol Ther. 2016 Feb;18 Suppl 2:S3-S13
[PMID: 26784127 ]
Diabet Med. 2007 Jul;24(7):753-8
[PMID: 17459094 ]
Diabetes Technol Ther. 2014 Oct;16(10):644-52
[PMID: 24956070 ]
Diabetes Technol Ther. 2005 Apr;7(2):253-63
[PMID: 15857227 ]
Diabetes Technol Ther. 2019 Jun;21(S2):S217-S225
[PMID: 31169432 ]
Biostatistics. 2020 May 22;:
[PMID: 32443145 ]
Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S55-67
[PMID: 19469679 ]
Diabetes Care. 2017 Dec;40(12):1631-1640
[PMID: 29162583 ]
Diabetes Metab J. 2015 Aug;39(4):273-82
[PMID: 26301188 ]
Crit Care Med. 2010 Mar;38(3):838-42
[PMID: 20035218 ]
Diabetes Technol Ther. 2011 Sep;13(9):921-8
[PMID: 21714681 ]
Diabetes Care. 2006 Nov;29(11):2433-8
[PMID: 17065680 ]
Diabetes Technol Ther. 2009 Sep;11(9):551-65
[PMID: 19764834 ]
Diabetes Care. 1980 Jan-Feb;3(1):58-62
[PMID: 6996969 ]
J Diabetes Sci Technol. 2020 Mar;14(2):277-283
[PMID: 30931606 ]
Bioinformatics. 2018 May 1;34(9):1609-1611
[PMID: 29315360 ]
Epidemiology. 2010 Sep;21(5):621-5
[PMID: 20699681 ]
J Diabetes Sci Technol. 2009 Nov 01;3(6):1388-94
[PMID: 20144393 ]
Diabetes Technol Ther. 2018 Jan;20(1):6-16
[PMID: 29227755 ]
Am J Med Sci. 2018 Dec;356(6):518-527
[PMID: 30447705 ]
Diabetes Technol Ther. 2018 Apr;20(4):314-316
[PMID: 29565197 ]
PLoS One. 2019 Oct 11;14(10):e0216851
[PMID: 31603912 ]
Diabetes Care. 2018 Nov;41(11):2275-2280
[PMID: 30224348 ]
Diabetes Care. 2019 Aug;42(8):1593-1603
[PMID: 31177185 ]
Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S45-54
[PMID: 19469677 ]
R01 HL146709/NHLBI NIH HHS
Blood Glucose
Blood Glucose Self-Monitoring
Data Analysis
Diabetes Mellitus
Disease Management
Humans
Software