Towards a replicator dynamics model of age structured populations.

K Argasinski, M Broom
Author Information
  1. K Argasinski: Institute of Mathematics of Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warsaw, Poland. argas1@wp.pl. ORCID
  2. M Broom: Department of Mathematics, City, University of London, Northampton Square, London, EC1V 0HB, UK.

Abstract

We present a new modelling framework combining replicator dynamics, the standard model of frequency dependent selection, with an age-structured population model. The new framework allows for the modelling of populations consisting of competing strategies carried by individuals who change across their life cycle. Firstly the discretization of the McKendrick von Foerster model is derived. We show that the Euler-Lotka equation is satisfied when the new model reaches a steady state (i.e. stable frequencies between the age classes). This discretization consists of unit age classes where the timescale is chosen so that only a fraction of individuals play a single game round. This implies a linear dynamics and individuals not killed during the round are moved to the next age class; linearity means that the system is equivalent to a large Bernadelli-Lewis-Leslie matrix. Then we use the methodology of multipopulation games to derive two, mutually equivalent systems of equations. The first contains equations describing the evolution of the strategy frequencies in the whole population, completed by subsystems of equations describing the evolution of the age structure for each strategy. The second contains equations describing the changes of the general population's age structure, completed with subsystems of equations describing the selection of the strategies within each age class. We then present the obtained system of replicator dynamics in the form of the mixed ODE-PDE system which is independent of the chosen timescale, and much simpler. The obtained results are illustrated by the example of the sex ratio model which shows that when different mortalities of the sexes are assumed, the sex ratio of 0.5 is obtained but that Fisher's mechanism, driven by the reproductive value of the different sexes, is not in equilibrium.

References

  1. Am Stat. 1985 Aug;39(3):176-85 [PMID: 12267300]
  2. J Math Biol. 2013 Oct;67(4):935-62 [PMID: 22936541]
  3. J Math Biol. 2020 Jan;80(1-2):205-273 [PMID: 31865403]
  4. Elife. 2017 Feb 15;6: [PMID: 28198700]
  5. Biometrika. 1945 Nov;33:183-212 [PMID: 21006835]
  6. Theory Biosci. 2018 Apr;137(1):33-50 [PMID: 29159683]
  7. J Math Biol. 2012 Dec;65(6-7):1411-5 [PMID: 22159789]
  8. J Theor Biol. 2015 Sep 7;380:506-15 [PMID: 26055649]
  9. Theor Popul Biol. 2003 Dec;64(4):519-33 [PMID: 14630486]
  10. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2102-11 [PMID: 25825766]
  11. J Theor Biol. 2020 Nov 19;:110540 [PMID: 33221278]
  12. J Math Biol. 2018 Jul;77(1):229-259 [PMID: 29236142]
  13. J Math Biol. 2020 Jan;80(1-2):189-204 [PMID: 31563973]
  14. J Theor Biol. 2012 Sep 21;309:134-46 [PMID: 22683379]
  15. J Genet. 2008 Dec;87(4):339-48 [PMID: 19147923]
  16. J Theor Biol. 2006 Jul 21;241(2):370-89 [PMID: 16460763]
  17. Philos Trans R Soc Lond B Biol Sci. 2010 Dec 27;365(1560):3959-68 [PMID: 21078648]
  18. PLoS One. 2011;6(6):e20809 [PMID: 21738586]
  19. Monogr Popul Biol. 1986;22:1-313 [PMID: 3526135]
  20. Am Nat. 2012 Jun;179(6):679-92 [PMID: 22617258]
  21. PLoS One. 2013 Apr 17;8(4):e60405 [PMID: 23613725]
  22. Demography. 1979 Aug;16(3):439-54 [PMID: 510638]
  23. J R Soc Interface. 2013 Aug 21;10(88):20130544 [PMID: 23966616]
  24. Theor Popul Biol. 2008 Mar;73(2):250-6 [PMID: 18179810]
  25. Math Biosci. 2006 Jul;202(1):88-114 [PMID: 16797041]

MeSH Term

Age Factors
Animals
Biological Evolution
Game Theory
Humans
Models, Biological
Population Dynamics
Reproduction
Sex Factors

Word Cloud

Created with Highcharts 10.0.0agemodelequationsdynamicsdescribingnewreplicatorindividualssystemobtainedpresentmodellingframeworkselectionpopulationpopulationsstrategiesdiscretizationfrequenciesclassestimescalechosenroundclassequivalentcontainsevolutionstrategycompletedsubsystemsstructuresexratiodifferentsexescombiningstandardfrequencydependentage-structuredallowsconsistingcompetingcarriedchangeacrosslifecycleFirstlyMcKendrickvonFoersterderivedshowEuler-LotkaequationsatisfiedreachessteadystateiestableconsistsunitfractionplaysinglegameimplieslinearkilledmovednextlinearitymeanslargeBernadelli-Lewis-Lesliematrixusemethodologymultipopulationgamesderivetwomutuallysystemsfirstwholesecondchangesgeneralpopulation'swithinformmixedODE-PDEindependentmuchsimplerresultsillustratedexampleshowsmortalitiesassumed05Fisher'smechanismdrivenreproductivevalueequilibriumTowardsstructured

Similar Articles

Cited By