An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning.

Fatih Ozyurt, Turker Tuncer, Abdulhamit Subasi
Author Information
  1. Fatih Ozyurt: Department of Software Engineering, College of Engineering, Firat University, Elazig, Turkey. Electronic address: fatihozyurt@firat.edu.tr.
  2. Turker Tuncer: Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey. Electronic address: turkertuncer@firat.edu.tr.
  3. Abdulhamit Subasi: Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, 20520, Finland; Department of Computer Science, College of Engineering, Effat University, Jeddah, 21478, Saudi Arabia. Electronic address: absubasi@effatuniversity.edu.sa.

Abstract

The new coronavirus disease known as COVID-19 is currently a pandemic that is spread out the whole world. Several methods have been presented to detect COVID-19 disease. Computer vision methods have been widely utilized to detect COVID-19 by using chest X-ray and computed tomography (CT) images. This work introduces a model for the automatic detection of COVID-19 using CT images. A novel handcrafted feature generation technique and a hybrid feature selector are used together to achieve better performance. The primary goal of the proposed framework is to achieve a higher classification accuracy than convolutional neural networks (CNN) using handcrafted features of the CT images. In the proposed framework, there are four fundamental phases, which are preprocessing, fused dynamic sized exemplars based pyramid feature generation, ReliefF, and iterative neighborhood component analysis based feature selection and deep neural network classifier. In the preprocessing phase, CT images are converted into 2D matrices and resized to 256 × 256 sized images. The proposed feature generation network uses dynamic-sized exemplars and pyramid structures together. Two basic feature generation functions are used to extract statistical and textural features. The selected most informative features are forwarded to artificial neural networks (ANN) and deep neural network (DNN) for classification. ANN and DNN models achieved 94.10% and 95.84% classification accuracies respectively. The proposed fused feature generator and iterative hybrid feature selector achieved the best success rate, according to the results obtained by using CT images.

Keywords

References

  1. Comput Biol Med. 2020 Nov;126:104037 [PMID: 33065387]
  2. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780 [PMID: 33705321]
  3. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  4. Chemometr Intell Lab Syst. 2020 Aug 15;203:104054 [PMID: 32427226]
  5. Appl Soft Comput. 2021 Feb;99:106859 [PMID: 33162872]
  6. Ing Rech Biomed. 2022 Apr;43(2):87-92 [PMID: 32837678]
  7. Comput Biol Med. 2020 Jun;121:103792 [PMID: 32568675]
  8. Appl Soft Comput. 2021 Jan;98:106912 [PMID: 33230395]
  9. IEEE Trans Med Imaging. 2020 Aug;39(8):2584-2594 [PMID: 32730211]
  10. Future Virol. 2019 Apr;14(4):237-246 [PMID: 32201499]
  11. Pattern Recognit Lett. 2020 Dec;140:95-100 [PMID: 33041409]
  12. Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1379-1389 [PMID: 32337662]
  13. Neural Comput Appl. 2020 Oct 26;:1-13 [PMID: 33132536]
  14. Nat Commun. 2020 Aug 14;11(1):4080 [PMID: 32796848]
  15. IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625 [PMID: 33156775]
  16. Eur Radiol. 2020 Dec;30(12):6517-6527 [PMID: 32617690]
  17. Turk J Med Sci. 2020 Apr 17;50(SI-1):604-610 [PMID: 32299200]
  18. Comput Med Imaging Graph. 2012 Apr;36(3):227-38 [PMID: 21803548]
  19. Eur Radiol. 2021 Aug;31(8):6096-6104 [PMID: 33629156]
  20. Med Phys. 2011 Feb;38(2):915-31 [PMID: 21452728]
  21. Appl Intell (Dordr). 2023;53(4):4874 [PMID: 38624372]
  22. Inf Fusion. 2021 Apr;68:131-148 [PMID: 33519321]
  23. Radiology. 2020 Aug;296(2):E115-E117 [PMID: 32073353]
  24. Med Hypotheses. 2020 Feb;135:109483 [PMID: 31954340]
  25. Nat Commun. 2020 Oct 9;11(1):5088 [PMID: 33037212]
  26. Biomed Signal Process Control. 2021 Jan;63:102173 [PMID: 32922509]
  27. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-346 [PMID: 32214079]
  28. Mayo Clin Proc. 2003 Jul;78(7):882-90 [PMID: 12839084]
  29. Radiology. 2020 Aug;296(2):E41-E45 [PMID: 32049601]

MeSH Term

COVID-19
Deep Learning
Humans
Neural Networks, Computer
Pandemics
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0featureCOVID-19imagesusingCTneuralgenerationproposedpyramidnetworkhybridclassificationfeaturesfuseddynamicbaseddeepdiseasemethodsdetectmodeldetectionhandcraftedselectorusedtogetherachieveframeworknetworkspreprocessingsizedexemplarsiterativeselectionANNDNNachievedexemplarnewcoronavirusknowncurrentlypandemicspreadwholeworldSeveralpresentedComputervisionwidelyutilizedchestX-raycomputedtomographyworkintroducesautomaticnoveltechniquebetterperformanceprimarygoalhigheraccuracyconvolutionalCNNfourfundamentalphasesReliefFneighborhoodcomponentanalysisclassifierphaseconverted2Dmatricesresized256 × 256usesdynamic-sizedstructuresTwobasicfunctionsextractstatisticaltexturalselectedinformativeforwardedartificialmodels9410%9584%accuraciesrespectivelygeneratorbestsuccessrateaccordingresultsobtainedautomatedextractionlearningDeepFusedresidualRFINCASelector

Similar Articles

Cited By