Formulation, Stability, Pharmacokinetic, and Modeling Studies for Tests of Synergistic Combinations of Orally Available Approved Drugs against Ebola Virus In Vivo.

Courtney L Finch, Julie Dyall, Shuang Xu, Elizabeth A Nelson, Elena Postnikova, Janie Y Liang, Huanying Zhou, Lisa Evans DeWald, Craig J Thomas, Amy Wang, Xin Xu, Emma Hughes, Patrick J Morris, Jon C Mirsalis, Linh H Nguyen, Maria P Arolfo, Bryan Koci, Michael R Holbrook, Lisa E Hensley, Peter B Jahrling, Connie Schmaljohn, Lisa M Johansen, Gene G Olinger, Joshua T Schiffer, Judith M White
Author Information
  1. Courtney L Finch: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  2. Julie Dyall: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA. ORCID
  3. Shuang Xu: Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA 98109, USA.
  4. Elizabeth A Nelson: Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA.
  5. Elena Postnikova: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  6. Janie Y Liang: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  7. Huanying Zhou: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  8. Lisa Evans DeWald: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  9. Craig J Thomas: National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Bethesda, MD 20892, USA.
  10. Amy Wang: National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Bethesda, MD 20892, USA.
  11. Xin Xu: National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Bethesda, MD 20892, USA. ORCID
  12. Emma Hughes: National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Bethesda, MD 20892, USA.
  13. Patrick J Morris: National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Bethesda, MD 20892, USA.
  14. Jon C Mirsalis: SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
  15. Linh H Nguyen: SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
  16. Maria P Arolfo: SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
  17. Bryan Koci: Eurofins Panlabs, 6 Research Park Dr., St. Charles, MO 63304, USA.
  18. Michael R Holbrook: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA. ORCID
  19. Lisa E Hensley: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  20. Peter B Jahrling: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  21. Connie Schmaljohn: Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
  22. Lisa M Johansen: Zalicus Inc., Cambridge, MA 02142, USA.
  23. Gene G Olinger: MRIGlobal, Gaithersburg, MD 20878, USA. ORCID
  24. Joshua T Schiffer: Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA 98109, USA.
  25. Judith M White: Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA. ORCID

Abstract

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.

Keywords

References

  1. Eur J Clin Pharmacol. 2000 Sep;56(6-7):469-75 [PMID: 11049009]
  2. Viruses. 2019 Mar 19;11(3): [PMID: 30893774]
  3. Nature. 2016 Mar 17;531(7594):381-5 [PMID: 26934220]
  4. PLoS Negl Trop Dis. 2016 Jan 11;10(1):e0004364 [PMID: 26752302]
  5. Lancet Infect Dis. 2020 Sep;20(9):e231-e237 [PMID: 32563280]
  6. Sci Rep. 2017 Jul 19;7(1):5886 [PMID: 28725019]
  7. EMBO J. 2012 Apr 18;31(8):1947-60 [PMID: 22395071]
  8. Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1151-1161 [PMID: 30408544]
  9. ACS Med Chem Lett. 2020 Jul 23;11(8):1653-1658 [PMID: 32832035]
  10. Biochem Biophys Res Commun. 2020 Feb 19;522(4):862-868 [PMID: 31806372]
  11. J Viral Hepat. 2018 Feb;25(2):118-125 [PMID: 28833938]
  12. J Virol. 2019 Apr 3;93(8): [PMID: 30700611]
  13. J Clin Invest. 2017 Apr 3;127(4):1338-1352 [PMID: 28240606]
  14. Annu Rev Med. 2017 Jan 14;68:359-370 [PMID: 27813879]
  15. JCI Insight. 2017 Mar 23;2(6):e88864 [PMID: 28352651]
  16. N Engl J Med. 2020 May 7;382(19):1832-1842 [PMID: 32441897]
  17. Nature. 2011 Aug 24;477(7364):340-3 [PMID: 21866103]
  18. Nat Med. 2012 Feb 19;18(3):446-51 [PMID: 22344296]
  19. Sci Adv. 2018 Nov 21;4(11):eaau8408 [PMID: 30474060]
  20. Antimicrob Agents Chemother. 2013 Dec;57(12):5820-9 [PMID: 24018260]
  21. Nature. 2011 Aug 24;477(7364):344-8 [PMID: 21866101]
  22. mBio. 2021 Jan 12;12(1): [PMID: 33436438]
  23. Viruses. 2016 Oct 27;8(11): [PMID: 27801778]
  24. J Virol. 2015 Oct 14;90(1):605-10 [PMID: 26468524]
  25. PLoS One. 2012;7(4):e35069 [PMID: 22493730]
  26. J Infect Dis. 2015 Oct 1;212 Suppl 2:S91-7 [PMID: 26063223]
  27. PLoS One. 2013;8(4):e60579 [PMID: 23577127]
  28. Antiviral Res. 2018 Feb;150:193-201 [PMID: 29294299]
  29. Antiviral Res. 2021 Feb;186:105011 [PMID: 33428961]
  30. PLoS One. 2018 Mar 22;13(3):e0194880 [PMID: 29566079]
  31. Emerg Microbes Infect. 2014 Dec;3(12):e84 [PMID: 26038505]
  32. Nat Biotechnol. 2009 Jul;27(7):659-66 [PMID: 19581876]
  33. Xenobiotica. 1992 Feb;22(2):153-69 [PMID: 1632105]
  34. Traffic. 2016 Jun;17(6):593-614 [PMID: 26935856]
  35. J Med Chem. 2018 Feb 8;61(3):724-733 [PMID: 29272110]
  36. Virology. 2018 Jan 1;513:17-28 [PMID: 29031163]
  37. Sci Transl Med. 2020 Apr 29;12(541): [PMID: 32253226]
  38. N Engl J Med. 1997 Sep 11;337(11):734-9 [PMID: 9287228]
  39. Curr Opin Pharmacol. 2019 Oct;48:92-98 [PMID: 31454708]
  40. J Med Chem. 2020 Oct 8;63(19):11085-11099 [PMID: 32886512]
  41. mBio. 2018 Jan 2;9(1): [PMID: 29295909]
  42. Antiviral Res. 2018 Sep;157:47-56 [PMID: 29981374]
  43. J Virol. 2006 Apr;80(8):4174-8 [PMID: 16571833]
  44. J Infect Dis. 2018 Nov 22;218(suppl_5):S588-S591 [PMID: 29982632]
  45. J Pharm Sci. 2019 Feb;108(2):798-806 [PMID: 30244014]
  46. Sci Rep. 2019 Dec 27;9(1):20199 [PMID: 31882748]
  47. Antiviral Res. 2018 Oct;158:226-237 [PMID: 30149038]
  48. J Gen Virol. 2019 Jun;100(6):911-912 [PMID: 31021739]
  49. N Engl J Med. 2019 Dec 12;381(24):2293-2303 [PMID: 31774950]
  50. J Biol Chem. 2016 Apr 22;291(17):9218-32 [PMID: 26953343]
  51. PLoS Negl Trop Dis. 2019 Jul 29;13(7):e0007595 [PMID: 31356611]
  52. J Infect Dis. 2018 Nov 22;218(suppl_5):S672-S678 [PMID: 29939303]
  53. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20803-20813 [PMID: 32764148]
  54. Science. 2015 Feb 27;347(6225):995-8 [PMID: 25722412]
  55. Curr Treat Options Infect Dis. 2017;9(3):299-317 [PMID: 28890666]
  56. Lancet. 2019 Mar 2;393(10174):936-948 [PMID: 30777297]
  57. Viruses. 2020 Dec 31;13(1): [PMID: 33396288]
  58. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30687-30698 [PMID: 33184176]
  59. Antiviral Res. 2018 Mar;151:97-104 [PMID: 29289666]
  60. J Clin Invest. 2015 Dec;125(12):4692-8 [PMID: 26551684]
  61. Sci Transl Med. 2015 Jun 3;7(290):290ra89 [PMID: 26041706]
  62. Sci Transl Med. 2016 Feb 3;8(324):324ra15 [PMID: 26843190]
  63. Sci Transl Med. 2013 Jun 19;5(190):190ra79 [PMID: 23785035]
  64. Nat Microbiol. 2019 Mar;4(3):390-395 [PMID: 30617348]
  65. PLoS One. 2019 Jul 5;14(7):e0219312 [PMID: 31276481]
  66. Curr Opin Virol. 2019 Apr;35:42-56 [PMID: 31003196]
  67. PLoS Med. 2018 Mar 27;15(3):e1002535 [PMID: 29584730]
  68. Antiviral Res. 2017 Jan;137:165-172 [PMID: 27890675]
  69. Nature. 2016 Jul 7;535(7610):169-172 [PMID: 27362232]
  70. mBio. 2016 Feb 09;7(1):e01857-15 [PMID: 26861015]
  71. PLoS One. 2013;8(2):e56265 [PMID: 23441171]
  72. Blood. 2007 Feb 1;109(3):1156-64 [PMID: 17053051]
  73. Antiviral Res. 2018 Dec;160:175-182 [PMID: 30395872]
  74. Nat Commun. 2018 Oct 1;9(1):4013 [PMID: 30275474]
  75. PLoS Negl Trop Dis. 2017 Apr 12;11(4):e0005540 [PMID: 28403145]
  76. J Virol. 2019 Jul 17;93(15): [PMID: 31092576]
  77. J Leukoc Biol. 2021 Feb;109(2):309-325 [PMID: 32441445]

Grants

  1. AI114776/NIH HHS
  2. AI121129/NIH HHS

Word Cloud

Created with Highcharts 10.0.0EBOVdrugsEVDsertralinecombinationsoralEbolamanagementtherapiesavailablefilovirusesactivitybepridil+toremifenemousemodelvehicledeliverycomponentactivePharmacokineticPKsynergymathematicalmodelinghumansOutbreaksebolavirusassociatedhighmorbiditymortalityMilestonesreachedrecentlydiseaselicensurevaccinetwomonoclonalantibodyHoweverneithervaccinesdisease-causingpreparationoutbreaksfacilecost-effectiveseekcocktailcontainingorallyroomtemperaturestablestrongmultiplepreviouslyshowedsynergisticallysuppresscellculturesdescribestepstowardstestingidentifiedsuitabledeterminedthusformulatedequallypreparationsDMSOmaintainuponstoragesolutionsevendaysstudiesindicatedwelltoleratedmicehighestdosestestedCollectivelydatasupportadvancementtestsMoreoverbasedhumanprojectssingleFormulationStabilityModelingStudiesTestsSynergisticCombinationsOrallyAvailableApprovedDrugsVirusVivoapilimodemergingvirusesfiloviruspandemicpreparednessprojectedbenefitviralpathogens

Similar Articles

Cited By