A Novel Infection Protocol in Zebrafish Embryo to Assess Virulence and Validate Efficacy of a Quorum Sensing Inhibitor In Vivo.

Pauline Nogaret, Fatima El Garah, Anne-Béatrice Blanc-Potard
Author Information
  1. Pauline Nogaret: Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, CEDEX 05, 34095 Montpellier, France. ORCID
  2. Fatima El Garah: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432 Toulouse, France. ORCID
  3. Anne-Béatrice Blanc-Potard: Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, CEDEX 05, 34095 Montpellier, France. ORCID

Abstract

The opportunistic human pathogen is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against . Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, -(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against , including new antivirulence compounds.

Keywords

References

  1. Methods Mol Biol. 2014;1149:709-21 [PMID: 24818945]
  2. Infect Immun. 2000 Jul;68(7):4331-4 [PMID: 10858254]
  3. Nat Rev Drug Discov. 2005 Jan;4(1):35-44 [PMID: 15688071]
  4. Expert Opin Drug Metab Toxicol. 2009 Apr;5(4):393-401 [PMID: 19368493]
  5. Front Microbiol. 2016 Aug 04;7:1219 [PMID: 27540375]
  6. FEMS Microbiol Lett. 2002 Sep 24;215(1):41-6 [PMID: 12393198]
  7. FEMS Microbiol Rev. 2017 Sep 1;41(5):698-722 [PMID: 28981745]
  8. J Bacteriol. 2019 Apr 22;201(18): [PMID: 31010902]
  9. Chem Biol. 2003 Oct;10(10):901-8 [PMID: 14583256]
  10. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  11. BMC Immunol. 2011 Oct 17;12:58 [PMID: 22003892]
  12. PLoS Pathog. 2015 Jun 16;11(6):e1004969 [PMID: 26080006]
  13. Sci Rep. 2019 Feb 6;9(1):1527 [PMID: 30728389]
  14. Front Cell Infect Microbiol. 2017 Jul 25;7:334 [PMID: 28791256]
  15. Trends Cell Biol. 2018 Feb;28(2):143-156 [PMID: 29173800]
  16. Trends Microbiol. 2020 Jan;28(1):10-18 [PMID: 31604611]
  17. J Clin Invest. 2003 Nov;112(10):1460-5 [PMID: 14617745]
  18. Cell Microbiol. 2009 May;11(5):755-68 [PMID: 19207728]
  19. Front Microbiol. 2015 Feb 04;6:38 [PMID: 25699030]
  20. PLoS One. 2012;7(12):e51766 [PMID: 23284763]
  21. Can J Microbiol. 2010 Apr;56(4):317-25 [PMID: 20453898]
  22. Curr Top Dev Biol. 2017;124:277-329 [PMID: 28335862]
  23. Microbiol Mol Biol Rev. 2012 Mar;76(1):46-65 [PMID: 22390972]
  24. Nat Rev Microbiol. 2016 Aug 11;14(9):576-88 [PMID: 27510864]
  25. Curr Opin Chem Biol. 2015 Feb;24:58-70 [PMID: 25461724]
  26. Antimicrob Agents Chemother. 2014 Jul;58(7):4054-63 [PMID: 24798271]
  27. J Med Chem. 2003 Jan 2;46(1):97-104 [PMID: 12502363]
  28. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  29. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1676-86 [PMID: 26711774]
  30. Dev Dyn. 2013 Feb;242(2):97-107 [PMID: 23203901]
  31. Sci Rep. 2021 Jan 11;11(1):359 [PMID: 33432030]
  32. Int J Biochem Cell Biol. 2014 Nov;56:92-106 [PMID: 25058313]
  33. Infect Immun. 2009 Apr;77(4):1293-303 [PMID: 19168742]
  34. Br J Clin Pharmacol. 2015 Feb;79(2):208-15 [PMID: 24552512]
  35. PLoS Pathog. 2019 Jun 20;15(6):e1007812 [PMID: 31220187]
  36. Antimicrob Agents Chemother. 2005 Aug;49(8):3222-7 [PMID: 16048929]
  37. Curr Top Microbiol Immunol. 2016;398:147-183 [PMID: 26942418]
  38. RSC Med Chem. 2020 Feb 19;11(3):358-369 [PMID: 33479641]
  39. Dis Model Mech. 2014 Jul;7(7):785-97 [PMID: 24973749]

Grants

  1. ANR-17-CE18-0011-02/Agence Nationale de la Recherche
  2. RF20190502411/Association Vaincre la Mucoviscidose

Word Cloud

Created with Highcharts 10.0.0newassessvivoembryosvalidatedC11humaninfectionsinfectedanimalmodelrapidlydrugefficacyZebrafishpresentnovelzebrafishimmersionmethodfirstvirulenceclinicallyusedquorumsensingopportunisticpathogenresponsiblevarietyacutemajorcausemortalitychronicallycysticfibrosispatientsDueincreasedresistanceantibioticstherapeuticstrategiesurgentlyneededcontextaimeddevelopsimplevertebrateincreasinglyconsideredmodelingcausedbacterialpathogenscommonlymicroinjectedstudyestablishedprotocolinfectionbasedbath96-wellplatestail-injuredfollowed48-hoursurveyembryoviabilitywild-typePAO1knownattenuatedmutantrelevanceantipseudomonaltestingusingantibioticciprofloxacinSecondlyQSinhibitorymolecule-2-pyrimidylbutanamideactivityvitropreviouslytestedsignificantprotectiveeffectobservedsupportingabilityattenuatepathogenicityconclusionreliablecomparestrainsrelevantdrugsincludingantivirulencecompoundsNovelInfectionProtocolEmbryoAssessVirulenceValidateEfficacyQuorumSensingInhibitorVivoPseudomonasaeruginosa

Similar Articles

Cited By