Novel Multimodal, Multiscale Imaging System with Augmented Reality.

Christopher Mela, Francis Papay, Yang Liu
Author Information
  1. Christopher Mela: Iowa Technology Institute, The University of Iowa, 103 South Capitol Street, Iowa City, IA 52242, USA.
  2. Francis Papay: Dermatology & Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
  3. Yang Liu: Iowa Technology Institute, The University of Iowa, 103 South Capitol Street, Iowa City, IA 52242, USA.

Abstract

A novel multimodal, multiscale imaging system with augmented reality capability were developed and characterized. The system offers 3D color reflectance imaging, 3D fluorescence imaging, and augmented reality in real time. Multiscale fluorescence imaging was enabled by developing and integrating an in vivo fiber-optic microscope. Real-time ultrasound-fluorescence multimodal imaging used optically tracked fiducial markers for registration. Tomographical data are also incorporated using optically tracked fiducial markers for registration. Furthermore, we characterized system performance and registration accuracy in a benchtop setting. The multiscale fluorescence imaging facilitated assessing the functional status of tissues, extending the minimal resolution of fluorescence imaging to ~17.5 µm. The system achieved a mean of Target Registration error of less than 2 mm for registering fluorescence images to ultrasound images and MRI-based 3D model, which is within clinically acceptable range. The low latency and high frame rate of the prototype system has shown the promise of applying the reported techniques in clinically relevant settings in the future.

Keywords

References

  1. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3240-3243 [PMID: 29060588]
  2. Ann Surg Oncol. 2009 Oct;16(10):2943-52 [PMID: 19582506]
  3. J Neurol Surg A Cent Eur Neurosurg. 2014 Nov;75(6):434-41 [PMID: 24971685]
  4. PLoS One. 2017 Apr 24;12(4):e0174928 [PMID: 28437441]
  5. Appl Opt. 2019 Oct 20;58(30):8237-8246 [PMID: 31674496]
  6. Annu Rev Med. 2016;67:153-64 [PMID: 26768238]
  7. Mol Imaging. 2017 Jan-Dec;16:1536012117722911 [PMID: 28849712]
  8. Int J Comput Assist Radiol Surg. 2018 Mar;13(3):425-441 [PMID: 28801767]
  9. IEEE Trans Biomed Eng. 2017 Mar;64(3):549-556 [PMID: 28129145]
  10. J Neuroimaging. 2017 Jan;27(1):5-15 [PMID: 27541694]
  11. Biomaterials. 2011 Oct;32(29):7127-38 [PMID: 21724249]
  12. J Reconstr Microsurg. 2016 Nov;32(9):688-698 [PMID: 27487485]
  13. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1078-1081 [PMID: 28268512]
  14. Int J Med Robot. 2020 Oct;16(5):1-28 [PMID: 32362063]
  15. J Biomed Opt. 2021 Jan;26(1): [PMID: 33398948]
  16. Med Phys. 2016 Jun;43(6):3143-3156 [PMID: 27277060]
  17. J Neurosci Methods. 2018 Jul 15;305:89-97 [PMID: 29768185]
  18. Nat Biomed Eng. 2020 Mar;4(3):298-313 [PMID: 32165732]
  19. Ultrasonics. 2017 Feb;74:11-20 [PMID: 27721196]
  20. Int J Comput Assist Radiol Surg. 2015 Dec;10(12):1905-13 [PMID: 26302723]
  21. J Nucl Med. 2020 Aug;61(8):1113-1122 [PMID: 32303598]
  22. Front Oncol. 2017 Dec 22;7:314 [PMID: 29312886]
  23. J Biophotonics. 2021 Jan;14(1):e202000280 [PMID: 32951321]
  24. PLoS One. 2015 Nov 03;10(11):e0141956 [PMID: 26529249]
  25. Int J Comput Assist Radiol Surg. 2015 May;10(5):541-54 [PMID: 24866060]
  26. J Neurosci Methods. 2017 Jun 15;285:45-48 [PMID: 28472679]
  27. World Neurosurg. 2017 Jun;102:661-667 [PMID: 28300710]
  28. Wien Klin Wochenschr. 2014 Feb;126(3-4):90-4 [PMID: 24442857]
  29. J Neurosurg. 2015 Jul;123(1):206-11 [PMID: 25748303]
  30. Int J Comput Assist Radiol Surg. 2019 Feb;14(2):203-213 [PMID: 30291592]
  31. Ann Surg. 2020 Nov 17;: [PMID: 33214476]
  32. Int J Comput Assist Radiol Surg. 2017 Jun;12(6):921-930 [PMID: 28342105]
  33. Cancer Control. 2018 Jan-Mar;25(1):1073274817752332 [PMID: 29334791]
  34. Ann Surg. 2020 Mar 27;: [PMID: 32224738]
  35. J Biomed Opt. 2016 Aug 1;21(8):80901 [PMID: 27533438]
  36. IEEE Trans Biomed Eng. 2016 Mar;63(3):600-6 [PMID: 26302503]
  37. Ann Biomed Eng. 2020 Aug;48(8):2171-2191 [PMID: 32601951]
  38. J Am Coll Surg. 2019 Apr;228(4):672-678 [PMID: 30582975]
  39. Methods Mol Biol. 2016;1444:85-95 [PMID: 27283420]
  40. Int J Surg. 2014;12(6):572-7 [PMID: 24735893]
  41. Med Image Comput Comput Assist Interv. 2013;16(Pt 3):363-70 [PMID: 24505782]
  42. Bone Joint Res. 2017 Mar;6(3):137-143 [PMID: 28258117]
  43. Int J Comput Assist Radiol Surg. 2015 Oct;10(10):1579-88 [PMID: 25556526]
  44. Ann Transl Med. 2016 Oct;4(20):392 [PMID: 27867944]
  45. Nat Mater. 2016 Feb;15(2):235-42 [PMID: 26595119]
  46. Neurosurgery. 2015 Jul;77(1):16-22; discussion 22 [PMID: 25812066]
  47. J Biomed Inform. 2015 Jun;55:124-31 [PMID: 25882923]
  48. Bioorg Med Chem. 2017 Apr 1;25(7):2017-2034 [PMID: 28284863]
  49. Magn Reson Imaging Clin N Am. 2010 Feb;18(1):1-10 [PMID: 19962089]

Grants

  1. Startup fund/University of Iowa

Word Cloud

Created with Highcharts 10.0.0imagingfluorescencesystemmultimodalmultiscaleaugmentedreality3DregistrationcharacterizedMultiscaleopticallytrackedfiducialmarkersimagesclinicallynovelcapabilitydevelopedofferscolorreflectancerealtimeenableddevelopingintegratingvivofiber-opticmicroscopeReal-timeultrasound-fluorescenceusedTomographicaldataalsoincorporatedusingFurthermoreperformanceaccuracybenchtopsettingfacilitatedassessingfunctionalstatustissuesextendingminimalresolution~175µmachievedmeanTargetRegistrationerrorless2mmregisteringultrasoundMRI-basedmodelwithinacceptablerangelowlatencyhighframerateprototypeshownpromiseapplyingreportedtechniquesrelevantsettingsfutureNovelMultimodalImagingSystemAugmentedRealitycomputervision

Similar Articles

Cited By