Thrombin-Derived Peptides Potentiate the Activity of Gram-Positive-Specific Antibiotics against Gram-Negative Bacteria.

Charlotte M J Wesseling, Thomas M Wood, Kristine Bertheussen, Samantha Lok, Nathaniel I Martin
Author Information
  1. Charlotte M J Wesseling: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands. ORCID
  2. Thomas M Wood: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands.
  3. Kristine Bertheussen: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands. ORCID
  4. Samantha Lok: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands.
  5. Nathaniel I Martin: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands.

Abstract

The continued rise of antibiotic resistance threatens to undermine the utility of the world's current antibiotic arsenal. This problem is particularly troubling when it comes to Gram-negative pathogens for which there are inherently fewer antibiotics available. To address this challenge, recent attention has been focused on finding compounds capable of disrupting the Gram-negative outer membrane as a means of potentiating otherwise Gram-positive-specific antibiotics. In this regard, agents capable of binding to the lipopolysaccharide (LPS) present in the Gram-negative outer membrane are of particular interest as synergists. Recently, thrombin-derived C-terminal peptides (TCPs) were reported to exhibit unique LPS-binding properties. We here describe investigations establishing the capacity of TCPs to act as synergists with the antibiotics erythromycin, rifampicin, novobiocin, and vancomycin against multiple Gram-negative strains including polymyxin-resistant clinical isolates. We further assessed the structural features most important for the observed synergy and characterized the outer membrane permeabilizing activity of the most potent synergists. Our investigations highlight the potential for such peptides in expanding the therapeutic range of antibiotics typically only used to treat Gram-positive infections.

Keywords

References

  1. Carbohydr Res. 2020 Dec;498:108051 [PMID: 33075674]
  2. Eur Biophys J. 2016 Apr;45(3):195-207 [PMID: 26745958]
  3. Antimicrob Agents Chemother. 1984 Jun;25(6):701-5 [PMID: 6331296]
  4. Nat Commun. 2018 Jul 17;9(1):2762 [PMID: 30018388]
  5. Antimicrob Agents Chemother. 1984 Jul;26(1):48-52 [PMID: 6433788]
  6. Nat Struct Biol. 1996 Oct;3(10):842-8 [PMID: 8836100]
  7. Commun Biol. 2021 Jan 4;4(1):31 [PMID: 33398076]
  8. Nat Commun. 2018 Jan 31;9(1):458 [PMID: 29386620]
  9. Microbiol Rev. 1992 Sep;56(3):395-411 [PMID: 1406489]
  10. Infect Immun. 1988 Sep;56(9):2324-9 [PMID: 3137167]
  11. J Med Chem. 2010 Mar 11;53(5):1898-916 [PMID: 19874036]
  12. Sci Rep. 2015 Nov 04;5:15963 [PMID: 26530005]
  13. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414 [PMID: 20452953]
  14. Nature. 2018 Jul;559(7715):617-621 [PMID: 30022160]
  15. Biochim Biophys Acta. 2006 Sep;1758(9):1513-22 [PMID: 16854372]
  16. PLoS Pathog. 2010 Apr 22;6(4):e1000857 [PMID: 20421939]
  17. Amino Acids. 2018 Jul;50(7):967 [PMID: 29752564]
  18. J Med Chem. 2003 Apr 24;46(9):1567-70 [PMID: 12699374]
  19. Med Clin North Am. 1982 Jan;66(1):157-68 [PMID: 7038325]
  20. Nature. 1983 Jun 9-15;303(5917):526-8 [PMID: 6406904]
  21. Biochemistry. 2003 Aug 12;42(31):9395-405 [PMID: 12899626]
  22. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  23. J Antibiot (Tokyo). 1992 May;45(5):742-9 [PMID: 1624376]
  24. Curr Top Med Chem. 2004;4(11):1173-84 [PMID: 15279607]
  25. Biochim Biophys Acta. 2016 May;1858(5):971-9 [PMID: 26801369]
  26. Drug Resist Updat. 2011 Apr;14(2):118-24 [PMID: 21435939]
  27. J Antimicrob Chemother. 1986 Jul;18(1):9-15 [PMID: 3019982]
  28. Antimicrob Agents Chemother. 2010 Aug;54(8):3341-6 [PMID: 20479195]
  29. Nat Microbiol. 2017 Mar 06;2:17028 [PMID: 28263303]
  30. Eur J Hosp Pharm. 2019 May;26(3):175-177 [PMID: 31428328]
  31. Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2374-2384 [PMID: 29885294]
  32. Peptides. 2019 Feb;112:149-153 [PMID: 30586602]
  33. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  34. Mayo Clin Proc. 1985 Mar;60(3):189-203 [PMID: 3974301]
  35. Molecules. 2019 Jan 11;24(2): [PMID: 30641878]
  36. J Bacteriol. 1985 Dec;164(3):1256-61 [PMID: 2999076]
  37. Crit Care. 2006;10(5):233 [PMID: 17044947]
  38. J Leukoc Biol. 1998 Jul;64(1):25-32 [PMID: 9665271]
  39. Biophys J. 2011 Jun 8;100(11):2652-61 [PMID: 21641310]
  40. Curr Opin Biotechnol. 1998 Aug;9(4):377-82 [PMID: 9720264]
  41. Biochemistry. 1987 Apr 21;26(8):2139-49 [PMID: 3040082]
  42. Mayo Clin Proc. 1985 Apr;60(4):271-8 [PMID: 3884913]
  43. Biochemistry. 1998 Oct 20;37(42):14713-8 [PMID: 9778346]
  44. Crit Rev Microbiol. 2019 Mar;45(2):131-161 [PMID: 31122100]
  45. Nature. 2017 Feb 28;543(7643):15 [PMID: 28252092]
  46. Biochemistry. 2000 Oct 3;39(39):11837-44 [PMID: 11009595]
  47. J Appl Microbiol. 2000 Feb;88(2):213-9 [PMID: 10735988]
  48. Sci Rep. 2015 Sep 22;5:14292 [PMID: 26390973]
  49. Front Microbiol. 2018 Sep 07;9:2153 [PMID: 30245684]
  50. Int J Mol Sci. 2020 Jun 17;21(12): [PMID: 32560350]
  51. Biomacromolecules. 2013 May 13;14(5):1482-92 [PMID: 23537377]
  52. Mar Drugs. 2015 May 27;13(6):3325-39 [PMID: 26023839]
  53. Antimicrob Agents Chemother. 1985 Apr;27(4):548-54 [PMID: 2988430]
  54. Antimicrob Agents Chemother. 2011 Jun;55(6):2880-90 [PMID: 21402837]
  55. Lancet Infect Dis. 2016 Feb;16(2):161-8 [PMID: 26603172]

Grants

  1. 541001001/ZonMw
  2. 725523/European Research Council

MeSH Term

Anti-Infective Agents
Antimicrobial Cationic Peptides
Drug Resistance, Bacterial
Drug Synergism
Gram-Negative Bacteria
Thrombin

Chemicals

Anti-Infective Agents
Antimicrobial Cationic Peptides
Thrombin

Word Cloud

Created with Highcharts 10.0.0Gram-negativeantibioticsoutermembraneantibioticsynergistspeptidescapableTCPsinvestigationssynergycontinuedriseresistancethreatensundermineutilityworld'scurrentarsenalproblemparticularlytroublingcomespathogensinherentlyfeweravailableaddresschallengerecentattentionfocusedfindingcompoundsdisruptingmeanspotentiatingotherwiseGram-positive-specificregardagentsbindinglipopolysaccharideLPSpresentparticularinterestRecentlythrombin-derivedC-terminalreportedexhibituniqueLPS-bindingpropertiesdescribeestablishingcapacityacterythromycinrifampicinnovobiocinvancomycinmultiplestrainsincludingpolymyxin-resistantclinicalisolatesassessedstructuralfeaturesimportantobservedcharacterizedpermeabilizingactivitypotenthighlightpotentialexpandingtherapeuticrangetypicallyusedtreatGram-positiveinfectionsThrombin-DerivedPeptidesPotentiateActivityGram-Positive-SpecificAntibioticsGram-NegativeBacteriaLPS-targetingcheckerboardassaysdisruption

Similar Articles

Cited By