Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model.

Amanda M Y Chu, Thomas W C Chan, Mike K P So, Wing-Keung Wong
Author Information
  1. Amanda M Y Chu: Department of Social Sciences, The Education University of Hong Kong, Tai Po, Hong Kong. ORCID
  2. Thomas W C Chan: Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. ORCID
  3. Mike K P So: Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. ORCID
  4. Wing-Keung Wong: Department of Finance, Fintech & Blockchain Research Center, and Big Data Research Center, Asia University, Taichung 41354, Taiwan. ORCID

Abstract

In this paper, we propose a latent pandemic space modeling approach for analyzing coronavirus disease 2019 (COVID-19) pandemic data. We developed a pandemic space concept that locates different regions so that their connections can be quantified according to the distances between them. A main feature of the pandemic space is to allow visualization of the pandemic status over time through the connectedness between regions. We applied the latent pandemic space model to dynamic pandemic networks constructed using data of confirmed cases of COVID-19 in 164 countries. We observed the ways in which pandemic risk evolves by tracing changes in the locations of countries within the pandemic space. Empirical results gained through this pandemic space analysis can be used to quantify the effectiveness of lockdowns, travel restrictions, and other measures in regard to reducing transmission risk across countries.

Keywords

References

  1. Sci Total Environ. 2020 Nov 10;742:140496 [PMID: 32640401]
  2. J Travel Med. 2020 Aug 20;27(5): [PMID: 32463088]
  3. Sci Rep. 2021 Mar 4;11(1):5112 [PMID: 33664280]
  4. Comput Mech. 2020;66(5):1081-1092 [PMID: 32904431]
  5. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10484-10491 [PMID: 32327608]
  6. J Travel Med. 2020 May 18;27(3): [PMID: 32181488]
  7. Int J Environ Res Public Health. 2020 Nov 29;17(23): [PMID: 33260326]
  8. Int J Environ Res Public Health. 2020 Nov 30;17(23): [PMID: 33266130]
  9. Comput Methods Biomech Biomed Engin. 2020 Aug;23(11):710-717 [PMID: 32367739]
  10. Bull Math Biol. 1991;53(1-2):33-55 [PMID: 2059741]
  11. Int J Surg. 2020 Jun;78:185-193 [PMID: 32305533]
  12. J Biol Dyn. 2010 Sep;4(5):478-89 [PMID: 22877143]
  13. Soc Media Soc. 2020 Jul 30;6(3):2056305120948257 [PMID: 34192040]
  14. Int J Infect Dis. 2021 Feb;103:97-101 [PMID: 33212255]
  15. Sens Int. 2020;1:100021 [PMID: 34766039]
  16. PLoS One. 2020 Jul 30;15(7):e0236619 [PMID: 32730356]
  17. J Travel Med. 2020 Dec 23;27(8): [PMID: 32970124]
  18. Int J Infect Dis. 2020 Jul;96:558-561 [PMID: 32437929]
  19. Int J Environ Res Public Health. 2020 Nov 30;17(23): [PMID: 33266276]
  20. Financ Res Lett. 2021 Jan;38:101625 [PMID: 36569647]
  21. Nat Med. 2006 May;12(5):497-9 [PMID: 16675989]
  22. Int J Environ Res Public Health. 2020 May 28;17(11): [PMID: 32481629]
  23. J Travel Med. 2020 Dec 23;27(8): [PMID: 32822473]
  24. Transp Policy (Oxf). 2020 Sep;96:40-47 [PMID: 32834679]
  25. PLoS Med. 2006 Jun;3(6):e212 [PMID: 16640458]
  26. Ann Med Surg (Lond). 2020 Jun 14;56:38-42 [PMID: 32562476]

MeSH Term

COVID-19
Communicable Disease Control
Humans
Pandemics
SARS-CoV-2
Space Simulation

Word Cloud

Created with Highcharts 10.0.0pandemicspaceCOVID-19countriesrisklatentmodelingcoronavirusdataregionscanvisualizationanalysisnetworkpaperproposeapproachanalyzingdisease2019developedconceptlocatesdifferentconnectionsquantifiedaccordingdistancesmainfeatureallowstatustimeconnectednessappliedmodeldynamicnetworksconstructedusingconfirmedcases164observedwaysevolvestracingchangeslocationswithinEmpiricalresultsgainedusedquantifyeffectivenesslockdownstravelrestrictionsmeasuresregardreducingtransmissionacrossDynamicNetworkAnalysisLatentPandemicSpaceModelnowcasting

Similar Articles

Cited By