Optimizing deep brain stimulation based on isostable amplitude in essential tremor patient models.

Benoit Duchet, Gihan Weerasinghe, Christian Bick, Rafal Bogacz
Author Information
  1. Benoit Duchet: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. ORCID
  2. Gihan Weerasinghe: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
  3. Christian Bick: Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom. ORCID
  4. Rafal Bogacz: Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. ORCID

Abstract

OBJECTIVE: Deep brain stimulation is a treatment for medically refractory essential tremor. To improve the therapy, closed-loop approaches are designed to deliver stimulation according to the system's state, which is constantly monitored by recording a pathological signal associated with symptoms (e.g. brain signal or limb tremor). Since the space of possible closed-loop stimulation strategies is vast and cannot be fully explored experimentally, how to stimulate according to the state should be informed by modeling. A typical modeling goal is to design a stimulation strategy that aims to maximally reduce the Hilbert amplitude of the pathological signal in order to minimize symptoms. Isostables provide a notion of amplitude related to convergence time to the attractor, which can be beneficial in model-based control problems. However, how isostable and Hilbert amplitudes compare when optimizing the amplitude response to stimulation in models constrained by data is unknown.
APPROACH: We formulate a simple closed-loop stimulation strategy based on models previously fitted to phase-locked deep brain stimulation data from essential tremor patients. We compare the performance of this strategy in suppressing oscillatory power when based on Hilbert amplitude and when based on isostable amplitude. We also compare performance to phase-locked stimulation and open-loop high-frequency stimulation.
MAIN RESULTS: For our closed-loop phase space stimulation strategy, stimulation based on isostable amplitude is significantly more effective than stimulation based on Hilbert amplitude when amplitude field computation time is limited to minutes. Performance is similar when there are no constraints, however constraints on computation time are expected in clinical applications. Even when computation time is limited to minutes, closed-loop phase space stimulation based on isostable amplitude is advantageous compared to phase-locked stimulation, and is more efficient than high-frequency stimulation.
SIGNIFICANCE: Our results suggest a potential benefit to using isostable amplitude more broadly for model-based optimization of stimulation in neurological disorders.

References

  1. PLoS Comput Biol. 2019 Aug 8;15(8):e1006575 [PMID: 31393880]
  2. J Neurosci. 2014 Oct 22;34(43):14475-83 [PMID: 25339758]
  3. Mov Disord. 2009 Aug 15;24(11):1629-35 [PMID: 19514010]
  4. IEEE Trans Neural Netw Learn Syst. 2017 Feb;28(2):371-382 [PMID: 26766381]
  5. Mov Disord. 2001 May;16(3):464-8 [PMID: 11391740]
  6. Biophys J. 1972 Jan;12(1):1-24 [PMID: 4332108]
  7. J Math Neurosci. 2013 Jan 24;3(1):2 [PMID: 23347723]
  8. Clin Neurophysiol. 2012 Jan;123(1):61-4 [PMID: 22055842]
  9. J Neurol Neurosurg Psychiatry. 2016 Dec;87(12):1388-1389 [PMID: 27530809]
  10. J Neural Eng. 2008 Mar;5(1):1-8 [PMID: 18310806]
  11. Brain. 2017 Jan;140(1):132-145 [PMID: 28007997]
  12. PLoS One. 2017 Aug 16;12(8):e0182884 [PMID: 28813460]
  13. PLoS Comput Biol. 2018 Dec 6;14(12):e1006606 [PMID: 30521519]
  14. Eur J Neurosci. 2012 Jul;36(2):2229-39 [PMID: 22805067]
  15. J Physiol. 2014 Apr 1;592(7):1429-55 [PMID: 24344162]
  16. Chaos. 2017 Feb;27(2):023119 [PMID: 28249399]
  17. Brain Stimul. 2019 Jul - Aug;12(4):868-876 [PMID: 30833216]
  18. PLoS One. 2014 Aug 19;9(8):e102591 [PMID: 25136855]
  19. J Neurophysiol. 2020 Feb 1;123(2):726-742 [PMID: 31774370]
  20. Mov Disord. 2019 Dec;34(12):1761-1773 [PMID: 31433906]
  21. J Math Biol. 2018 Jan;76(1-2):37-66 [PMID: 28547210]
  22. PLoS Comput Biol. 2016 Jul 14;12(7):e1005011 [PMID: 27415832]
  23. Brain. 2013 Oct;136(Pt 10):3062-75 [PMID: 24038075]
  24. Philos Trans A Math Phys Eng Sci. 2008 Oct 13;366(1880):3545-73 [PMID: 18632457]
  25. PLoS Comput Biol. 2017 Jan 9;13(1):e1005326 [PMID: 28068428]
  26. Wiley Interdiscip Rev Syst Biol Med. 2018 Mar 20;:e1421 [PMID: 29558564]
  27. J Neurol Neurosurg Psychiatry. 1987 Jun;50(6):691-8 [PMID: 3612149]
  28. Brain. 2017 Apr 1;140(4):1053-1067 [PMID: 28334851]
  29. J Math Neurosci. 2013 Aug 14;3(1):13 [PMID: 23945295]
  30. Neurology. 1986 Feb;36(2):225-31 [PMID: 3945394]
  31. Biol Cybern. 2006 Jul;95(1):69-85 [PMID: 16614837]
  32. Mov Disord. 2017 Aug;32(8):1183-1190 [PMID: 28639263]
  33. Chaos. 2020 Jan;30(1):013121 [PMID: 32013514]
  34. Brain. 2015 Oct;138(Pt 10):2934-47 [PMID: 26248468]
  35. Eur J Neurosci. 2006 Apr;23(7):1956-60 [PMID: 16623853]
  36. Phys Rev Lett. 2013 May 17;110(20):204102 [PMID: 25167416]
  37. J Comput Neurosci. 2013 Apr;34(2):259-71 [PMID: 22903565]
  38. BMC Neurol. 2014 Jun 05;14:120 [PMID: 24903550]
  39. Mov Disord. 2003 Apr;18(4):357-63 [PMID: 12671940]
  40. J Neurosci. 2015 Jan 14;35(2):795-806 [PMID: 25589772]
  41. Phys Rev Lett. 2014 Dec 19;113(25):254101 [PMID: 25554883]
  42. Exp Neurol. 2013 Feb;240:122-9 [PMID: 23178580]
  43. Curr Neurol Neurosci Rep. 2013 Sep;13(9):378 [PMID: 23893097]
  44. Curr Biol. 2018 Apr 23;28(8):1169-1178.e6 [PMID: 29606416]
  45. Neurology. 2018 Mar 13;90(11):e971-e976 [PMID: 29444973]
  46. Anesthesiology. 2013 Oct;119(4):848-60 [PMID: 23770601]
  47. J Math Neurosci. 2020 May 27;10(1):9 [PMID: 32462281]
  48. Ann Neurol. 2013 Sep;74(3):449-57 [PMID: 23852650]
  49. Sci Rep. 2017 Apr 21;7(1):1033 [PMID: 28432303]
  50. J Neurophysiol. 2005 Jan;93(1):117-27 [PMID: 15317839]
  51. J Comput Neurosci. 2014 Oct;37(2):243-57 [PMID: 24899243]
  52. Mov Disord. 2015 Jun;30(7):1003-5 [PMID: 25999288]
  53. IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):15-24 [PMID: 20889437]
  54. Curr Biol. 2009 Oct 13;19(19):1637-41 [PMID: 19800236]
  55. J Neurosci. 2010 Sep 15;30(37):12340-52 [PMID: 20844130]
  56. Phys Rev E. 2016 Jul;94(1-1):012211 [PMID: 27575127]
  57. J Comput Neurosci. 2014 Oct;37(2):345-55 [PMID: 24965911]
  58. Proc Biol Sci. 2002 Mar 22;269(1491):545-51 [PMID: 11916469]
  59. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13592-13601 [PMID: 31209041]
  60. J Neurol Neurosurg Psychiatry. 1998 Feb;64(2):273-6 [PMID: 9489548]
  61. J Math Neurosci. 2020 Mar 30;10(1):4 [PMID: 32232686]
  62. J Neurosurg. 2006 Apr;104(4):506-12 [PMID: 16619653]
  63. J Neurol Neurosurg Psychiatry. 2003 Oct;74(10):1387-91 [PMID: 14570831]
  64. J Neurosci. 2019 Feb 6;39(6):1119-1134 [PMID: 30552179]

Grants

  1. MC_UU_00003/1/Medical Research Council
  2. MC_UU_12024/5/Medical Research Council

MeSH Term

Brain
Deep Brain Stimulation
Essential Tremor
Humans
Tremor

Word Cloud

Created with Highcharts 10.0.0stimulationamplitudebasedisostableclosed-loopbraintremorstrategyHilberttimeessentialsignalspacecomparemodelsphase-lockedcomputationaccordingstatepathologicalsymptomsmodelingmodel-baseddatadeepperformancehigh-frequencyphaselimitedminutesconstraintsOBJECTIVE:Deeptreatmentmedicallyrefractoryimprovetherapyapproachesdesigneddeliversystem'sconstantlymonitoredrecordingassociatedeglimbSincepossiblestrategiesvastfullyexploredexperimentallystimulateinformedtypicalgoaldesignaimsmaximallyreduceorderminimizeIsostablesprovidenotionrelatedconvergenceattractorcanbeneficialcontrolproblemsHoweveramplitudesoptimizingresponseconstrainedunknownAPPROACH:formulatesimplepreviouslyfittedpatientssuppressingoscillatorypoweralsoopen-loopMAINRESULTS:significantlyeffectivefieldPerformancesimilarhoweverexpectedclinicalapplicationsEvenadvantageouscomparedefficientSIGNIFICANCE:resultssuggestpotentialbenefitusingbroadlyoptimizationneurologicaldisordersOptimizingpatient

Similar Articles

Cited By