Palladium-Catalyzed Cascade to Benzoxepins by Using Vinyl-Substituted Donor-Acceptor Cyclopropanes.

Matteo Faltracco, Koen N A van de Vrande, Martijn Dijkstra, Jordy M Saya, Trevor A Hamlin, Eelco Ruijter
Author Information
  1. Matteo Faltracco: Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands. ORCID
  2. Koen N A van de Vrande: Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
  3. Martijn Dijkstra: Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
  4. Jordy M Saya: Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands. ORCID
  5. Trevor A Hamlin: Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands. ORCID
  6. Eelco Ruijter: Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands. ORCID

Abstract

A palladium-catalyzed intermolecular cascade (4+3) cyclocondensation of salicylaldehydes and vinylcyclopropanes is reported. A key feature of the reaction is the use of a phosphonate group as an acceptor moiety on the cyclopropane, exploiting its propensity to undergo olefination with aldehydes. Subsequent O-allylation enabled the formation of a range of substituted benzoxepinsWith a novel chiral ligand, the products were obtained in generally good yield and with reasonable enantioselectivity.

Keywords

References

  1. J Am Chem Soc. 2015 Jul 1;137(25):8006-9 [PMID: 26068395]
  2. J Nat Prod. 2006 Mar;69(3):323-7 [PMID: 16562827]
  3. Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5739-5743 [PMID: 30811778]
  4. Org Lett. 2019 Aug 16;21(16):6221-6224 [PMID: 31380649]
  5. Chemistry. 2015 Feb 2;21(6):2335-8 [PMID: 25504908]
  6. Chem Rev. 2021 Jan 13;121(1):110-139 [PMID: 32786421]
  7. Chem Rev. 2019 Sep 11;119(17):10288-10317 [PMID: 31244001]
  8. Org Biomol Chem. 2016 Sep 26;14(38):8971-8988 [PMID: 27714269]
  9. Org Biomol Chem. 2015 Jan 21;13(3):655-71 [PMID: 25425071]
  10. Chem Pharm Bull (Tokyo). 2010 Feb;58(2):191-4 [PMID: 20118577]
  11. Chem Commun (Camb). 2015 Jan 4;51(1):77-80 [PMID: 25383663]
  12. Angew Chem Int Ed Engl. 2020 Feb 24;59(9):3385-3398 [PMID: 31529661]
  13. Chem Commun (Camb). 2016 Apr 18;52(30):5332-5 [PMID: 27005726]
  14. Chem Rev. 2003 Apr;103(4):1151-96 [PMID: 12683780]
  15. Org Lett. 2019 Dec 6;21(23):9405-9409 [PMID: 31710237]
  16. Angew Chem Int Ed Engl. 2013 Jun 3;52(23):6050-4 [PMID: 23620447]
  17. Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14410-14414 [PMID: 33822456]
  18. J Am Chem Soc. 2011 Nov 23;133(46):18618-21 [PMID: 22026505]
  19. J Org Chem. 2020 Aug 7;85(15):9566-9584 [PMID: 32584576]
  20. Angew Chem Int Ed Engl. 2020 Feb 3;59(6):2429-2439 [PMID: 31782597]
  21. J Org Chem. 2019 Sep 20;84(18):11983-11991 [PMID: 31419134]
  22. Org Lett. 2019 Mar 15;21(6):1713-1716 [PMID: 30829043]
  23. Angew Chem Int Ed Engl. 2014 May 26;53(22):5504-23 [PMID: 24771660]
  24. Org Lett. 2018 Nov 2;20(21):6611-6615 [PMID: 30350659]
  25. Angew Chem Int Ed Engl. 2018 Aug 6;57(32):10338-10342 [PMID: 29936708]
  26. Chem Commun (Camb). 2017 Jul 27;53(61):8521-8524 [PMID: 28707695]
  27. Org Lett. 2019 Sep 6;21(17):6805-6810 [PMID: 31407913]
  28. Angew Chem Int Ed Engl. 2019 May 6;58(19):6225-6229 [PMID: 30758111]
  29. Org Lett. 2016 Feb 5;18(3):564-7 [PMID: 26783691]
  30. Org Lett. 2016 Jun 17;18(12):2922-5 [PMID: 27267360]
  31. Org Lett. 2016 May 6;18(9):2220-3 [PMID: 27092393]
  32. Org Lett. 2008 Jun 19;10(12):2541-4 [PMID: 18503280]
  33. Org Lett. 2015 Sep 4;17(17):4220-3 [PMID: 26275101]
  34. Org Lett. 2017 May 5;19(9):2266-2269 [PMID: 28418676]
  35. J Antibiot (Tokyo). 1997 Apr;50(4):325-9 [PMID: 9186558]
  36. Angew Chem Int Ed Engl. 2002 Jan 4;41(1):27-47 [PMID: 12491443]
  37. J Org Chem. 2018 Feb 16;83(4):2341-2348 [PMID: 29363965]
  38. Chem Commun (Camb). 2019 Feb 12;55(14):2031-2034 [PMID: 30687855]
  39. Org Lett. 2015 Jan 2;17(1):150-3 [PMID: 25525709]
  40. Chem Soc Rev. 2014 Feb 7;43(3):804-18 [PMID: 24257068]
  41. Org Lett. 2016 Jun 3;18(11):2754-7 [PMID: 27184762]
  42. Chem Commun (Camb). 2019 Jun 21;55(49):7069-7072 [PMID: 31147663]
  43. J Org Chem. 2019 Sep 20;84(18):12058-12070 [PMID: 31446758]

Word Cloud

Created with Highcharts 10.0.0cascadeolefinationpalladium-catalyzedintermolecular4+3cyclocondensationsalicylaldehydesvinylcyclopropanesreportedkeyfeaturereactionusephosphonategroupacceptormoietycyclopropaneexploitingpropensityundergoaldehydesSubsequentO-allylationenabledformationrangesubstitutedbenzoxepinsWithnovelchiralligandproductsobtainedgenerallygoodyieldreasonableenantioselectivityPalladium-CatalyzedCascadeBenzoxepinsUsingVinyl-SubstitutedDonor-AcceptorCyclopropanesbenzoxepinsreactionspalladiumseven-memberedrings

Similar Articles

Cited By