Toward photoswitchable electronic pre-resonance stimulated Raman probes.

Dongkwan Lee, Chenxi Qian, Haomin Wang, Lei Li, Kun Miao, Jiajun Du, Daria M Shcherbakova, Vladislav V Verkhusha, Lihong V Wang, Lu Wei
Author Information
  1. Dongkwan Lee: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. ORCID
  2. Chenxi Qian: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  3. Haomin Wang: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. ORCID
  4. Lei Li: Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA.
  5. Kun Miao: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  6. Jiajun Du: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  7. Daria M Shcherbakova: Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
  8. Vladislav V Verkhusha: Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA. ORCID
  9. Lihong V Wang: Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA. ORCID
  10. Lu Wei: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. ORCID

Abstract

Reversibly photoswitchable probes allow for a wide variety of optical imaging applications. In particular, photoswitchable fluorescent probes have significantly facilitated the development of super-resolution microscopy. Recently, stimulated Raman scattering (SRS) imaging, a sensitive and chemical-specific optical microscopy, has proven to be a powerful live-cell imaging strategy. Driven by the advances of newly developed Raman probes, in particular the pre-resonance enhanced narrow-band vibrational probes, electronic pre-resonance SRS (epr-SRS) has achieved super-multiplex imaging with sensitivity down to 250 nM and multiplexity up to 24 colors. However, despite the high demand, photoswitchable Raman probes have yet to be developed. Here, we propose a general strategy for devising photoswitchable epr-SRS probes. Toward this goal, we exploit the molecular electronic and vibrational coupling, in which we switch the electronic states of the molecules to four different states to turn their ground-state epr-SRS signals on and off. First, we showed that inducing transitions to both the electronic excited state and triplet state can effectively diminish the SRS peaks. Second, we revealed that the epr-SRS signals can be effectively switched off in red-absorbing organic molecules through light-facilitated transitions to a reduced state. Third, we identified that photoswitchable proteins with near-infrared photoswitchable absorbance, whose states are modulable with their electronic resonances detunable toward and away from the pump photon energy, can function as the photoswitchable epr-SRS probes with desirable sensitivity (<1 µM) and low photofatigue (>40 cycles). These photophysical characterizations and proof-of-concept demonstrations should advance the development of novel photoswitchable Raman probes and open up the unexplored Raman imaging capabilities.

References

  1. Nat Protoc. 2011 Jun 16;6(7):991-1009 [PMID: 21720313]
  2. Chemphyschem. 2014 Mar 17;15(4):655-63 [PMID: 24449030]
  3. Annu Rev Phys Chem. 2007;58:461-88 [PMID: 17105414]
  4. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  5. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  6. Nat Rev Mol Cell Biol. 2017 Nov;18(11):685-701 [PMID: 28875992]
  7. J Am Chem Soc. 2020 Oct 21;142(42):17828-17844 [PMID: 33034452]
  8. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  9. J Am Chem Soc. 2017 Jan 18;139(2):583-586 [PMID: 28027644]
  10. Anal Chem. 2016 Dec 6;88(23):11821-11829 [PMID: 27807973]
  11. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  12. Nat Cell Biol. 2019 Jan;21(1):72-84 [PMID: 30602772]
  13. J Am Chem Soc. 2009 Dec 30;131(51):18192-3 [PMID: 19961226]
  14. Biochemistry. 1999 Nov 16;38(46):15185-92 [PMID: 10563801]
  15. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  16. J Phys Chem B. 2010 Sep 2;114(34):11282-91 [PMID: 20695476]
  17. Opt Express. 2011 Feb 14;19(4):3130-43 [PMID: 21369135]
  18. Photochem Photobiol Sci. 2011 Apr;10(4):499-506 [PMID: 21152594]
  19. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  20. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  21. Chemphyschem. 2012 Jan 16;13(1):99-107 [PMID: 22213647]
  22. J Am Chem Soc. 2012 Dec 26;134(51):20681-9 [PMID: 23198907]
  23. Science. 2004 Nov 19;306(5700):1370-3 [PMID: 15550670]
  24. Trends Cell Biol. 2009 Nov;19(11):555-65 [PMID: 19836954]
  25. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  26. Opt Lett. 1999 Jul 15;24(14):954-6 [PMID: 18073907]
  27. Nat Commun. 2018 Jul 16;9(1):2734 [PMID: 30013153]
  28. Opt Express. 2013 Jun 3;21(11):13864-74 [PMID: 23736639]
  29. Trends Biotechnol. 2018 Dec;36(12):1230-1243 [PMID: 30041828]
  30. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  31. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  32. Light Sci Appl. 2018 Oct 24;7:81 [PMID: 30374403]
  33. Opt Express. 2016 Sep 5;24(18):20745-54 [PMID: 27607677]
  34. Nat Biotechnol. 2008 Sep;26(9):1035-40 [PMID: 18724362]
  35. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  36. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  37. J Am Chem Soc. 2020 Dec 9;142(49):20701-20707 [PMID: 33225696]
  38. Science. 2006 Sep 15;313(5793):1642-5 [PMID: 16902090]
  39. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3220-5 [PMID: 22328153]
  40. Nat Methods. 2006 Oct;3(10):793-5 [PMID: 16896339]
  41. Curr Opin Chem Biol. 2013 Aug;17(4):682-90 [PMID: 23876529]
  42. Nano Lett. 2015 Jan 14;15(1):103-6 [PMID: 25423166]
  43. Photochem Photobiol. 2006 Mar-Apr;82(2):351-8 [PMID: 16613485]
  44. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17565-9 [PMID: 16314572]

Grants

  1. DP2 GM140919/NIGMS NIH HHS
  2. R21 EY030705/NEI NIH HHS
  3. R35 GM122567/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0photoswitchableprobesRamanelectronicimagingepr-SRSSRSpre-resonancestatesstatecanopticalparticulardevelopmentmicroscopystimulatedstrategydevelopedvibrationalsensitivityTowardmoleculessignalstransitionseffectivelyReversiblyallowwidevarietyapplicationsfluorescentsignificantlyfacilitatedsuper-resolutionRecentlyscatteringsensitivechemical-specificprovenpowerfullive-cellDrivenadvancesnewlyenhancednarrow-bandachievedsuper-multiplex250nMmultiplexity24colorsHoweverdespitehighdemandyetproposegeneraldevisinggoalexploitmolecularcouplingswitchfourdifferentturnground-stateFirstshowedinducingexcitedtripletdiminishpeaksSecondrevealedswitchedred-absorbingorganiclight-facilitatedreducedThirdidentifiedproteinsnear-infraredabsorbancewhosemodulableresonancesdetunabletowardawaypumpphotonenergyfunctiondesirable<1µMlowphotofatigue>40cyclesphotophysicalcharacterizationsproof-of-conceptdemonstrationsadvancenovelopenunexploredcapabilities

Similar Articles

Cited By