Social Space Diffusion: Applications of a Latent Space Model to Diffusion with Uncertain Ties.

Jacob C Fisher
Author Information
  1. Jacob C Fisher: University of Michigan.

Abstract

Social networks represent two different facets of social life: (1) stable paths for diffusion, or the spread of something through a connected population, and (2) random draws from an underlying social space, which indicate the relative positions of the people in the network to one another. The dual nature of networks creates a challenge - if the observed network ties are a single random draw, is it realistic to expect that diffusion only follows the observed network ties? This study takes a first step towards integrating these two perspectives by introducing a social space diffusion model. In the model, network ties indicate positions in social space, and diffusion occurs proportionally to distance in social space. Practically, the simulation occurs in two parts. First, positions are estimated using a statistical model (in this example, a latent space model). Then, second, the predicted probabilities of a tie from that model - representing the distances in social space - or a series of networks drawn from those probabilities - representing routine churn in the network - are used as weights in a weighted averaging framework. Using longitudinal data from high school friendship networks, I explore the properties of the model. I show that the model produces smoothed diffusion results, which predict attitudes in future waves 10% better than a diffusion model using the observed network, and up to 5% better than diffusion models using alternative, non-model-based smoothing approaches.

References

  1. Soc Networks. 2011 May;33(2):101-112 [PMID: 21765588]
  2. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3682-7 [PMID: 22355142]
  3. N Engl J Med. 2007 Jul 26;357(4):370-9 [PMID: 17652652]
  4. Soc Sci Med. 2012 Jun;74(12):1952-60 [PMID: 22475405]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056108 [PMID: 17279969]
  6. Am J Prev Med. 2007 May;32(5):395-402 [PMID: 17478265]
  7. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5766-71 [PMID: 16578874]
  8. Soc Curr. 2017 Feb;5(1):49-66 [PMID: 29335675]
  9. Am J Public Health. 2009 Jun;99(6):1023-31 [PMID: 19372508]
  10. Annu Rev Psychol. 2002;53:575-604 [PMID: 11752497]
  11. Science. 2011 Dec 2;334(6060):1269-72 [PMID: 22144624]
  12. J Stat Softw. 2008 Feb;24: [PMID: 28804272]
  13. Psychol Rev. 1956 May;63(3):181-94 [PMID: 13323174]
  14. Soc Networks. 2013 Oct;35(4): [PMID: 24311893]
  15. Prev Sci. 2004 Mar;5(1):31-9 [PMID: 15058910]
  16. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 [PMID: 16723398]

Grants

  1. R01 DA013709/NIDA NIH HHS
  2. R01 DA018225/NIDA NIH HHS
  3. R01 AA014702/NIAAA NIH HHS
  4. R25 HD079352/NICHD NIH HHS
  5. T32 AG000139/NIA NIH HHS
  6. UL1 TR002240/NCATS NIH HHS
  7. R01 HD075712/NICHD NIH HHS
  8. R03 HD050374/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0modeldiffusionsocialspacenetwork-networkstwopositionsobservedusingSocialrandomindicatetiesoccursprobabilitiesrepresentingbetterSpacerepresentdifferentfacetslife:1stablepathsspreadsomethingconnectedpopulation2drawsunderlyingrelativepeopleoneanotherdualnaturecreateschallengesingledrawrealisticexpectfollowsties?studytakesfirststeptowardsintegratingperspectivesintroducingproportionallydistancePracticallysimulationpartsFirstestimatedstatisticalexamplelatentsecondpredictedtiedistancesseriesdrawnroutinechurnusedweightsweightedaveragingframeworkUsinglongitudinaldatahighschoolfriendshipexplorepropertiesshowproducessmoothedresultspredictattitudesfuturewaves10%5%modelsalternativenon-model-basedsmoothingapproachesDiffusion:ApplicationsLatentModelDiffusionUncertainTies

Similar Articles

Cited By (2)