De novo assembly of the freshwater prawn Macrobrachium carcinus brain transcriptome for identification of potential targets for antibody development.

Jonathan L Crooke-Rosado, Sara C Diaz-Mendez, Yamil E Claudio-Roman, Nilsa M Rivera, Maria A Sosa
Author Information
  1. Jonathan L Crooke-Rosado: Department of Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
  2. Sara C Diaz-Mendez: Department of Biology, Cayey Campus, University of Puerto Rico, Cayey, Puerto Rico. ORCID
  3. Yamil E Claudio-Roman: Department of Biology, Cayey Campus, University of Puerto Rico, Cayey, Puerto Rico.
  4. Nilsa M Rivera: Department of Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
  5. Maria A Sosa: Department of Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico. ORCID

Abstract

Crustaceans are major constituents of aquatic ecosystems and, as such, changes in their behavior and the structure and function of their bodies can serve as indicators of alterations in their immediate environment, such as those associated with climate change and anthropogenic contamination. We have used bioinformatics and a de novo transcriptome assembly approach to identify potential targets for developing specific antibodies to serve as nervous system function markers for freshwater prawns of the Macrobrachium spp. Total RNA was extracted from brain ganglia of Macrobrachium carcinus freshwater prawns and Illumina Next Generation Sequencing was performed using an Eel Pond mRNA Seq Protocol to construct a de novo transcriptome. Sequencing yielded 97,202,662 sequences: 47,630,546 paired and 1,941,570 singletons. Assembly with Trinity resulted in 197,898 assembled contigs from which 30,576 were annotated: 9,600 by orthology, 17,197 by homology, and 3,779 by transcript families. We looked for glutamate receptors contigs, due to their main role in crustacean excitatory neurotransmission, and found 138 contigs related to ionotropic receptors, 32 related to metabotropic receptors, and 18 to unidentified receptors. After performing multiple sequence alignments within different biological organisms and antigenicity analysis, we were able to develop antibodies for prawn AMPA ionotropic glutamate receptor 1, metabotropic glutamate receptor 1 and 4, and ionotropic NMDA glutamate receptor subunit 2B, with the expectation that the availability of these antibodies will help broaden knowledge regarding the underlying structural and functional mechanisms involved in prawn behavioral responses to environmental impacts. The Macrobrachium carcinus brain transcriptome can be an important tool for examining changes in many other nervous system molecules as a function of developmental stages, or in response to particular conditions or treatments.

References

  1. J Neurosci. 1997 Oct 1;17(19):7503-22 [PMID: 9295396]
  2. J Comp Neurol. 2013 Jul 1;521(10):2279-97 [PMID: 23238970]
  3. Gen Comp Endocrinol. 2009 Feb 1;160(3):271-87 [PMID: 19135444]
  4. Gene. 2019 May 20;697:35-39 [PMID: 30794911]
  5. BMC Genomics. 2015 Jul 03;16:491 [PMID: 26138936]
  6. R Soc Open Sci. 2017 Dec 6;4(12):171558 [PMID: 29308271]
  7. Pharmacol Rev. 2010 Sep;62(3):405-96 [PMID: 20716669]
  8. Brain Res Brain Res Rev. 1999 Jan;29(1):83-120 [PMID: 9974152]
  9. J Neurophysiol. 1998 Dec;80(6):2893-9 [PMID: 9862893]
  10. BMC Genomics. 2015 Mar 14;16:186 [PMID: 25867484]
  11. PLoS One. 2013 May 29;8(5):e60839 [PMID: 23734171]
  12. PLoS One. 2015 May 29;10(5):e0123848 [PMID: 26023789]
  13. J Neurophysiol. 2000 Mar;83(3):1188-201 [PMID: 10712449]
  14. FEBS Lett. 1990 Dec 10;276(1-2):172-4 [PMID: 1702393]
  15. Invert Neurosci. 2019 Sep 23;19(4):12 [PMID: 31549228]
  16. PLoS One. 2015 Mar 23;10(3):e0121324 [PMID: 25799112]
  17. PLoS One. 2011;6(12):e27938 [PMID: 22174756]
  18. PLoS One. 2014 May 12;9(5):e97323 [PMID: 24819537]
  19. Fish Shellfish Immunol. 2013 Oct;35(4):1061-9 [PMID: 23816854]
  20. Learn Mem. 2016 Jul 15;23(8):427-34 [PMID: 27421895]
  21. Brain Res. 2005 Nov 16;1062(1-2):1-8 [PMID: 16256086]
  22. PeerJ. 2016 Oct 5;4:e2520 [PMID: 27761323]
  23. Aquat Toxicol. 2018 Feb;195:1-7 [PMID: 29197714]
  24. Int J Mol Sci. 2016 May 31;17(6): [PMID: 27258252]
  25. Neuropharmacology. 1974 Jul;13(7):665-72 [PMID: 4437737]
  26. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1992 Sep;103(1):13-7 [PMID: 1360366]
  27. PLoS One. 2012;7(6):e39727 [PMID: 22745820]
  28. Neurosci Lett. 1997 Sep 26;234(1):31-4 [PMID: 9347939]
  29. BMC Genomics. 2016 Jan 16;17:63 [PMID: 26772543]
  30. PLoS One. 2015 Dec 30;10(12):e0145964 [PMID: 26716450]
  31. Annu Rev Pharmacol Toxicol. 2010;50:295-322 [PMID: 20055706]
  32. PLoS One. 2018 Sep 21;13(9):e0203935 [PMID: 30240423]
  33. Exp Parasitol. 2014 Oct;145:99-109 [PMID: 25131775]
  34. Microsc Res Tech. 2012 Dec;75(12):1613-22 [PMID: 22833248]
  35. Mol Pharmacol. 1995 May;47(5):1057-64 [PMID: 7746273]
  36. Comp Biochem Physiol Part D Genomics Proteomics. 2012 Jun;7(2):124-60 [PMID: 22305610]
  37. PeerJ. 2018 Jul 4;6:e5154 [PMID: 30013834]
  38. J Comp Neurol. 2003 Oct 13;465(2):250-62 [PMID: 12949785]
  39. PLoS One. 2017 Apr 10;12(4):e0175315 [PMID: 28394948]
  40. BMC Genomics. 2016 Nov 4;17(1):868 [PMID: 27809760]
  41. Comput Biol Chem. 2019 Feb;78:205-216 [PMID: 30576966]
  42. BMC Genomics. 2013 Jul 09;14:465 [PMID: 23837739]
  43. Sci Rep. 2014 Nov 25;4:7081 [PMID: 25420880]
  44. J Physiol. 1964 Mar;170:296-317 [PMID: 14165167]
  45. Synapse. 1991 Sep;9(1):35-42 [PMID: 1686671]
  46. Int J Environ Res Public Health. 2014 Jul 14;11(7):7116-43 [PMID: 25026081]
  47. Neuropharmacology. 2001 Jun;40(7):856-65 [PMID: 11378156]
  48. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]
  49. Sci Rep. 2017 Sep 22;7(1):12161 [PMID: 28939826]

Grants

  1. G12 MD007600/NIMHD NIH HHS
  2. R25 GM061838/NIGMS NIH HHS
  3. U54 MD007600/NIMHD NIH HHS

MeSH Term

Animals
Antibodies
Brain
Ecosystem
Gene Expression Profiling
High-Throughput Nucleotide Sequencing
Molecular Sequence Annotation
Palaemonidae
Receptors, Glutamate
Transcriptome

Chemicals

Antibodies
Receptors, Glutamate

Word Cloud

Created with Highcharts 10.0.0transcriptomeMacrobrachiumglutamatereceptorsfunctionnovoantibodiesfreshwaterbraincarcinus1contigsionotropicprawnreceptorchangescanservedeassemblypotentialtargetsnervoussystemprawnsSequencing197relatedmetabotropicCrustaceansmajorconstituentsaquaticecosystemsbehaviorstructurebodiesindicatorsalterationsimmediateenvironmentassociatedclimatechangeanthropogeniccontaminationusedbioinformaticsapproachidentifydevelopingspecificmarkerssppTotalRNAextractedgangliaIlluminaNextGenerationperformedusingEelPondmRNASeqProtocolconstructyielded97202662sequences:47630546paired941570singletonsAssemblyTrinityresulted898assembled30576annotated:9600orthology17homology3779transcriptfamilieslookedduemainrolecrustaceanexcitatoryneurotransmissionfound1383218unidentifiedperformingmultiplesequencealignmentswithindifferentbiologicalorganismsantigenicityanalysisabledevelopAMPA4NMDAsubunit2BexpectationavailabilitywillhelpbroadenknowledgeregardingunderlyingstructuralfunctionalmechanismsinvolvedbehavioralresponsesenvironmentalimpactsimportanttoolexaminingmanymoleculesdevelopmentalstagesresponseparticularconditionstreatmentsDeidentificationantibodydevelopment

Similar Articles

Cited By