History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications.

Karim Azer, Chanchala D Kaddi, Jeffrey S Barrett, Jane P F Bai, Sean T McQuade, Nathaniel J Merrill, Benedetto Piccoli, Susana Neves-Zaph, Luca Marchetti, Rosario Lombardo, Silvia Parolo, Selva Rupa Christinal Immanuel, Nitin S Baliga
Author Information
  1. Karim Azer: Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States.
  2. Chanchala D Kaddi: Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States.
  3. Jeffrey S Barrett: Critical Path Institute, Tucson, AZ, United States.
  4. Jane P F Bai: Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States.
  5. Sean T McQuade: Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States.
  6. Nathaniel J Merrill: Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States.
  7. Benedetto Piccoli: Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States.
  8. Susana Neves-Zaph: Translational Disease Modeling, Data and Data Science, Sanofi, Bridgewater, NJ, United States.
  9. Luca Marchetti: Fondazione the Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  10. Rosario Lombardo: Fondazione the Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  11. Silvia Parolo: Fondazione the Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  12. Selva Rupa Christinal Immanuel: Institute for Systems Biology, Seattle, WA, United States.
  13. Nitin S Baliga: Institute for Systems Biology, Seattle, WA, United States.

Abstract

Mathematical biology and pharmacology models have a long and rich history in the fields of medicine and physiology, impacting our understanding of disease mechanisms and the development of novel therapeutics. With an increased focus on the pharmacology application of system models and the advances in data science spanning mechanistic and empirical approaches, there is a significant opportunity and promise to leverage these advancements to enhance the development and application of the systems pharmacology field. In this paper, we will review milestones in the evolution of mathematical biology and pharmacology models, highlight some of the gaps and challenges in developing and applying systems pharmacology models, and provide a vision for an integrated strategy that leverages advances in adjacent fields to overcome these challenges.

Keywords

References

  1. Clin Pharmacokinet. 2006;45(7):683-704 [PMID: 16802850]
  2. Genes Nutr. 2018 Apr 30;13:12 [PMID: 29736190]
  3. J Theor Biol. 2001 Nov 7;213(1):73-88 [PMID: 11708855]
  4. CPT Pharmacometrics Syst Pharmacol. 2019 Nov;8(11):777-791 [PMID: 31535440]
  5. Math Biosci. 2002 Nov-Dec;180:329-62 [PMID: 12387931]
  6. Nat Methods. 2016 Nov 29;13(12):966-967 [PMID: 27898060]
  7. Mol Syst Biol. 2019 Mar 4;15(3):e8584 [PMID: 30833303]
  8. Curr Opin Biotechnol. 2012 Aug;23(4):617-23 [PMID: 22054827]
  9. Nat Rev Microbiol. 2004 Nov;2(11):886-97 [PMID: 15494745]
  10. Elife. 2017 Dec 05;6: [PMID: 29206104]
  11. Curr Top Microbiol Immunol. 2013;374:211-41 [PMID: 23881288]
  12. Nat Protoc. 2011 Aug 04;6(9):1290-307 [PMID: 21886097]
  13. Bioinformatics. 2021 Jun 9;37(9):1269-1277 [PMID: 33225350]
  14. J Pharm Sci. 2021 Feb;110(2):567-583 [PMID: 32956678]
  15. Cell. 2012 Jul 20;150(2):389-401 [PMID: 22817898]
  16. Mol Syst Biol. 2010 Oct 19;6:422 [PMID: 20959820]
  17. CPT Pharmacometrics Syst Pharmacol. 2019 Jun;8(6):336-339 [PMID: 30924594]
  18. CPT Pharmacometrics Syst Pharmacol. 2018 Jul;7(7):442-452 [PMID: 29920993]
  19. Nat Biotechnol. 2007 Nov;25(11):1251-5 [PMID: 17989687]
  20. CPT Pharmacometrics Syst Pharmacol. 2019 Apr;8(4):205-210 [PMID: 30697975]
  21. Nucleic Acids Res. 2015 Jul 1;43(W1):W535-42 [PMID: 25925572]
  22. BMC Bioinformatics. 2018 Jun 28;19(1):248 [PMID: 29954318]
  23. J Biomed Inform. 2018 May;81:83-92 [PMID: 29601989]
  24. AAPS J. 2019 Jun 3;21(4):72 [PMID: 31161268]
  25. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D689-91 [PMID: 16381960]
  26. PLoS Comput Biol. 2012;8(8):e1002662 [PMID: 22956899]
  27. J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3 [PMID: 25810774]
  28. Nat Rev Drug Discov. 2007 Feb;6(2):140-8 [PMID: 17268485]
  29. Nat Med. 2014 Jan;20(1):75-9 [PMID: 24336248]
  30. Brief Bioinform. 2020 Mar 23;21(2):527-540 [PMID: 30753281]
  31. Front Pharmacol. 2019 Apr 18;10:416 [PMID: 31057411]
  32. Toxicol Sci. 2018 Apr 1;162(2):341-348 [PMID: 29385573]
  33. CPT Pharmacometrics Syst Pharmacol. 2015 Nov;4(11):615-29 [PMID: 26783498]
  34. Gene Regul Syst Bio. 2017 Jun 22;11:1177625017710941 [PMID: 28804243]
  35. Bioinformatics. 2017 Dec 15;33(24):3973-3981 [PMID: 29036271]
  36. Curr Opin Syst Biol. 2018 Feb;7:8-15 [PMID: 29806041]
  37. CPT Pharmacometrics Syst Pharmacol. 2018 Mar;7(3):135-146 [PMID: 29349875]
  38. Annu Rev Physiol. 1972;34:13-46 [PMID: 4334846]
  39. Front Immunol. 2013 Jan 07;3:411 [PMID: 23308075]
  40. Front Microbiol. 2018 May 23;9:1028 [PMID: 29875747]
  41. Bioinformatics. 2013 Nov 15;29(22):2909-17 [PMID: 23969135]
  42. Clin Dev Immunol. 2012;2012:139127 [PMID: 22811737]
  43. PLoS One. 2018 Mar 7;13(3):e0192949 [PMID: 29513758]
  44. Nucleic Acids Res. 2018 Jan 4;46(D1):D656-D660 [PMID: 29092055]
  45. Front Neuroinform. 2015 May 21;9:13 [PMID: 26052282]
  46. BMC Bioinformatics. 2006 Jun 02;7:280 [PMID: 16749936]
  47. J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):159-180 [PMID: 29307099]
  48. CPT Pharmacometrics Syst Pharmacol. 2019 Jun;8(6):340-343 [PMID: 30983158]
  49. Biomed Res Int. 2015;2015:918710 [PMID: 26380306]
  50. Front Pharmacol. 2020 Mar 24;11:333 [PMID: 32265707]
  51. Expert Opin Drug Metab Toxicol. 2009 Feb;5(2):211-23 [PMID: 19199378]
  52. CPT Pharmacometrics Syst Pharmacol. 2019 Jun;8(6):380-395 [PMID: 31087533]
  53. Gene Regul Syst Bio. 2017 Mar 10;11:1177625017691937 [PMID: 28469411]
  54. Biotechnol Prog. 2012 Jan-Feb;28(1):33-44 [PMID: 21954150]
  55. BMC Bioinformatics. 2013 Jul 10;14:221 [PMID: 23841912]
  56. CPT Pharmacometrics Syst Pharmacol. 2017 Aug;6(8):499-511 [PMID: 28681552]
  57. Front Genet. 2016 May 31;7:94 [PMID: 27303434]
  58. Nucleic Acids Res. 2016 Jan 4;44(D1):D471-80 [PMID: 26527732]
  59. Nat Biotechnol. 2018 Aug;36(7):651-659 [PMID: 29912209]
  60. Nucleic Acids Res. 2019 Jan 8;47(D1):D542-D549 [PMID: 30395242]
  61. CPT Pharmacometrics Syst Pharmacol. 2016 Mar;5(3):140-6 [PMID: 27069777]
  62. J Pharmacokinet Pharmacodyn. 2013 Jun;40(3):257-65 [PMID: 23338980]
  63. Sci Data. 2015 Mar 31;2:150010 [PMID: 25977815]
  64. Cancer Immunol Immunother. 2017 Jun;66(6):731-735 [PMID: 28280852]
  65. NPJ Syst Biol Appl. 2018 Aug 3;4:28 [PMID: 30083389]
  66. BMC Syst Biol. 2018 Mar 2;12(1):25 [PMID: 29499714]
  67. BMC Med Inform Decis Mak. 2018 Jul 23;18(Suppl 2):42 [PMID: 30066644]
  68. CPT Pharmacometrics Syst Pharmacol. 2016 Feb;5(2):82-90 [PMID: 26933519]
  69. Cell Syst. 2018 Dec 26;7(6):567-579.e6 [PMID: 30503647]
  70. Mucosal Immunol. 2011 May;4(3):271-8 [PMID: 21430653]
  71. Oxid Med Cell Longev. 2019 May 16;2019:1769437 [PMID: 31223421]
  72. Gene Regul Syst Bio. 2017 Jul 26;11:1177625017711414 [PMID: 29581702]
  73. mSystems. 2020 Dec 1;5(6): [PMID: 33262242]
  74. Sci Rep. 2020 Jun 3;10(1):9063 [PMID: 32493951]
  75. BMC Bioinformatics. 2019 Sep 6;20(1):457 [PMID: 31492098]
  76. Mol Med Rep. 2017 Aug;16(2):1900-1910 [PMID: 28627690]
  77. PLoS Comput Biol. 2015 Nov 30;11(11):e1004543 [PMID: 26618656]
  78. Nat Commun. 2015 Jan 12;6:5829 [PMID: 25581030]
  79. Nucleic Acids Res. 2014 Oct;42(18):11291-303 [PMID: 25232098]
  80. Nat Microbiol. 2016 Jun 06;1(8):16078 [PMID: 27573104]
  81. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17845-50 [PMID: 20876091]
  82. Drug Discov Today Technol. 2016 Sep - Dec;21-22:57-65 [PMID: 27978989]
  83. Wiley Interdiscip Rev Syst Biol Med. 2019 Nov;11(6):e1459 [PMID: 31260191]
  84. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  85. J Theor Biol. 2019 Mar 21;465:51-55 [PMID: 30639297]
  86. Mol Syst Biol. 2009;5:320 [PMID: 19888215]
  87. Sci Rep. 2016 Jul 07;6:28851 [PMID: 27385551]
  88. Infect Immun. 2016 Apr 22;84(5):1650-1669 [PMID: 26975995]
  89. Comput Struct Biotechnol J. 2016 Aug 26;14:333-40 [PMID: 27642503]
  90. BMC Syst Biol. 2007 Jun 08;1:26 [PMID: 17555602]
  91. CPT Pharmacometrics Syst Pharmacol. 2016 Feb;5(2):43-53 [PMID: 26933515]
  92. Trends Microbiol. 2018 Jun;26(6):555-556 [PMID: 29580884]
  93. Bull Math Biol. 2013 Nov;75(11):2118-49 [PMID: 24018536]
  94. PLoS Comput Biol. 2017 May 17;13(5):e1005489 [PMID: 28520713]
  95. Microbiome. 2018 Sep 21;6(1):171 [PMID: 30241567]
  96. CPT Pharmacometrics Syst Pharmacol. 2020 Jul;9(7):374-383 [PMID: 32558397]
  97. Nat Rev Mol Cell Biol. 2003 Mar;4(3):237-43 [PMID: 12612642]
  98. Nat Rev Dis Primers. 2016 Oct 27;2:16076 [PMID: 27784885]
  99. CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):516-531 [PMID: 27653238]

Grants

  1. R01 AI128215/NIAID NIH HHS
  2. R01 AI141953/NIAID NIH HHS
  3. U19 AI106761/NIAID NIH HHS
  4. U19 AI135976/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0pharmacologybiologymodelssystemsdevelopmentfieldsapplicationadvancesdatasciencechallengesMathematicallongrichhistorymedicinephysiologyimpactingunderstandingdiseasemechanismsnoveltherapeuticsincreasedfocussystemspanningmechanisticempiricalapproachessignificantopportunitypromiseleverageadvancementsenhancefieldpaperwillreviewmilestonesevolutionmathematicalhighlightgapsdevelopingapplyingprovidevisionintegratedstrategyleveragesadjacentovercomeHistoryFuturePerspectivesDisciplineQuantitativeSystemsPharmacologyModelingApplicationsQSPmodelingbioinformaticscomputationaldrug

Similar Articles

Cited By