Spectroscopic and in silico investigation of the interaction between GH1 β-glucosidase and ginsenoside Rb.

Shuning Zhong, Mi Yan, Haoyang Zou, Ping Zhao, Haiqing Ye, Tiehua Zhang, Changhui Zhao
Author Information
  1. Shuning Zhong: College of Food Science and Engineering Jilin University Changchun China.
  2. Mi Yan: College of Food Science and Engineering Jilin University Changchun China.
  3. Haoyang Zou: College of Food Science and Engineering Jilin University Changchun China.
  4. Ping Zhao: College of Food Science and Engineering Jilin University Changchun China.
  5. Haiqing Ye: College of Food Science and Engineering Jilin University Changchun China. ORCID
  6. Tiehua Zhang: College of Food Science and Engineering Jilin University Changchun China. ORCID
  7. Changhui Zhao: College of Food Science and Engineering Jilin University Changchun China. ORCID

Abstract

The function and application of β-glucosidase attract attention nowadays. β-glucosidase was confirmed of transforming ginsenoside Rb to rare ginsenoside, but the interaction mechanism remains not clear. In this work, β-glucosidase from GH1 family of Paenibacillus was selected, and its gene sequence was synthesized by codon. Then, recombinant plasmid was transferred into BL21 (DE3) and expressed. The UV-visible spectrum showed that ginsenoside Rb decreased the polarity of the corresponding structure of hydrophobic aromatic amino acids (Trp) in β-glucosidase and increased new π-π transition. The fluorescence quenching spectrum showed that ginsenoside Rb inhibited intrinsic fluorescence, formed static quenching, reduced the surface hydrophobicity of β-glucosidase, and K was 8.37 × 10 L/M (298K). Circular dichroism (CD) showed that secondary structure of β-glucosidase was changed by the binding action. Localized surface plasmon resonance (LSPR) showed that β-glucosidase and Rb had strong binding power which KD value was 5.24 × 10 (±2.35 × 10) M. Molecular docking simulation evaluated the binding site, hydrophobic force, hydrogen bond, and key amino acids of β-glucosidase with ginsenoside Rb in the process. Thus, this work could provide basic mechanisms of the binding and interaction between β-glucosidase and ginsenoside Rb.

Keywords

References

  1. J Biomol Struct Dyn. 2019 Feb;37(2):359-371 [PMID: 29338579]
  2. Appl Environ Microbiol. 1998 Jul;64(7):2748-54 [PMID: 9647863]
  3. Food Chem. 2017 Jul 15;227:102-110 [PMID: 28274409]
  4. Mikrochim Acta. 2019 Feb 15;186(3):180 [PMID: 30771096]
  5. Methods Mol Biol. 2019;2003:253-279 [PMID: 31218622]
  6. ACS Omega. 2019 Aug 01;4(8):13114-13123 [PMID: 31460439]
  7. Food Sci Nutr. 2020 Jun 24;8(8):4151-4158 [PMID: 32884696]
  8. Food Chem. 2020 May 1;311:126015 [PMID: 31864188]
  9. J Biomol Struct Dyn. 2019 May;37(8):2030-2040 [PMID: 29757090]
  10. Food Sci Nutr. 2019 Dec 16;8(1):620-628 [PMID: 31993185]
  11. Langmuir. 2016 May 17;32(19):4917-23 [PMID: 27089379]
  12. Biotechnol Appl Biochem. 2016 Jul;63(4):532-8 [PMID: 26011629]
  13. Acc Chem Res. 2018 Sep 18;51(9):1911-1920 [PMID: 30160941]
  14. J Microbiol. 2005 Oct;43(5):456-62 [PMID: 16273039]
  15. J Biomol Struct Dyn. 2021 Feb;39(3):1029-1043 [PMID: 32000592]
  16. J Biomol Struct Dyn. 2021 Jun;39(9):3358-3377 [PMID: 32397834]
  17. J Agric Food Chem. 2016 Mar 30;64(12):2506-12 [PMID: 26494255]
  18. Appl Microbiol Biotechnol. 2019 Sep;103(17):7003-7015 [PMID: 31289903]
  19. J Ginseng Res. 2020 Jul;44(4):552-562 [PMID: 32617035]
  20. Plant Sci. 2015 Dec;241:246-59 [PMID: 26706075]
  21. Food Chem. 2019 Oct 15;295:563-568 [PMID: 31174796]
  22. Biosens Bioelectron. 2019 Oct 1;142:111449 [PMID: 31279816]
  23. Sci Rep. 2016 Mar 24;6:23605 [PMID: 27009476]
  24. Food Chem. 2019 Mar 1;275:346-353 [PMID: 30724206]
  25. Biochem Pharmacol. 1999 Dec 1;58(11):1685-93 [PMID: 10571242]
  26. Food Chem Toxicol. 2019 Feb;124:45-53 [PMID: 30496780]
  27. Food Sci Nutr. 2020 Sep 13;8(11):5926-5933 [PMID: 33282244]
  28. Crit Rev Food Sci Nutr. 2020;60(1):94-107 [PMID: 30582348]
  29. Biotechnol Biofuels. 2018 Mar 29;11:81 [PMID: 29610578]
  30. Enzyme Microb Technol. 2014 Apr 10;57:48-54 [PMID: 24629267]
  31. Food Sci Nutr. 2021 Feb 09;9(4):1917-1928 [PMID: 33841810]
  32. Sci Rep. 2016 Jun 08;6:27062 [PMID: 27271847]

Word Cloud

Created with Highcharts 10.0.0β-glucosidaseginsenosideRbinteractionshowedbindingworkGH1spectrumstructurehydrophobicaminoacidsfluorescencequenchingsurfacedockingfunctionapplicationattractattentionnowadaysconfirmedtransformingraremechanismremainsclearfamilyPaenibacillusselectedgenesequencesynthesizedcodonrecombinantplasmidtransferredBL21DE3expressedUV-visibledecreasedpolaritycorrespondingaromaticTrpincreasednewπ-πtransitioninhibitedintrinsicformedstaticreducedhydrophobicityK837 × 10L/M298KCirculardichroismCDsecondarychangedactionLocalizedplasmonresonanceLSPRstrongpowerKDvalue524 × 10±235 × 10MMolecularsimulationevaluatedsiteforcehydrogenbondkeyprocessThusprovidebasicmechanismsSpectroscopicsilicoinvestigationRb1molecularmultispectralmethodβ‐glucosidase

Similar Articles

Cited By