Oligomerization and Cell Egress Controlled by Two Microdomains of Canine Distemper Virus Matrix Protein.

Matthieu Gast, Nicole P Kadzioch, Doreen Milius, Francesco Origgi, Philippe Plattet
Author Information
  1. Matthieu Gast: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  2. Nicole P Kadzioch: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  3. Doreen Milius: Institute of Science and Technology (IST), Bioimaging Facility, Klosterneuburg, Austria.
  4. Francesco Origgi: Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  5. Philippe Plattet: Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland philippe.plattet@vetsuisse.unibe.ch. ORCID

Abstract

The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM. Despite the availability of efficient vaccines, morbilliviruses (e.g., canine distemper virus [CDV] and measles virus [MeV]) still cause major health impairments. Although antivirals may support vaccination campaigns, approved inhibitors are to date still lacking. Targeting late stages of the viral life cycle (i.e., the cell exit system) represents a viable option to potentially counteract morbilliviral infections. The matrix (M) protein of morbillivirus is a major contributor to membrane budding activity and is assumed to assemble into dimers that further associate to form higher oligomers. Here, we rationally engineered M protein variants with modifications in two microdomains that potentially locate at dimer-dimer interfaces. Our results spotlight the cornerstone impact of both microdomains in membrane budding activity and further suggest a role of finely tuned high-order oligomer formation in regulating late stages of cell exit. Collectively, our findings highlight two microdomains in the morbilliviral M protein as novel attractive targets for drug design.

Keywords

References

  1. Arch Virol. 2010 Sep;155(9):1503-8 [PMID: 20625777]
  2. J Virol. 2007 Mar;81(6):2564-72 [PMID: 17182683]
  3. Virus Res. 2007 Nov;129(2):145-54 [PMID: 17706826]
  4. Cell Microbiol. 2007 May;9(5):1203-14 [PMID: 17217427]
  5. J Virol. 2009 Jul;83(14):7261-72 [PMID: 19439476]
  6. J Vet Med Sci. 2004 Apr;66(4):409-15 [PMID: 15133271]
  7. Langmuir. 2011 Jan 4;27(1):304-11 [PMID: 21141948]
  8. Virol J. 2007 Jan 04;4:1 [PMID: 17204159]
  9. Intervirology. 2011;54(4):217-28 [PMID: 21228536]
  10. EMBO J. 2000 Jul 17;19(14):3576-85 [PMID: 10899112]
  11. Nature. 2011 Nov 02;480(7378):530-3 [PMID: 22048310]
  12. J Virol. 2001 Dec;75(23):11384-91 [PMID: 11689619]
  13. J Virol. 2013 Feb;87(4):1974-84 [PMID: 23221571]
  14. J Virol. 2009 Oct;83(20):10374-83 [PMID: 19656884]
  15. Open Virol J. 2012;6:68-72 [PMID: 22715352]
  16. J Virol. 2015 Apr;89(8):4624-35 [PMID: 25673702]
  17. Biophys J. 2012 Jun 6;102(11):2517-25 [PMID: 22713567]
  18. J Virol. 2001 Jul;75(13):5842-50 [PMID: 11390585]
  19. J Virol. 2007 Jul;81(13):6827-36 [PMID: 17442724]
  20. J Gen Virol. 2004 Oct;85(Pt 10):3001-3006 [PMID: 15448363]
  21. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13996-4000 [PMID: 22891297]
  22. J Virol. 2005 Dec;79(24):15218-25 [PMID: 16306593]
  23. J Virol. 2006 Nov;80(22):11062-73 [PMID: 16971425]
  24. J Virol. 2011 Jul;85(14):7162-8 [PMID: 21543493]
  25. J Virol. 1999 Jan;73(1):251-9 [PMID: 9847328]
  26. J Virol. 2001 Jul;75(14):6418-27 [PMID: 11413309]
  27. J Virol. 2020 Dec 9;95(1): [PMID: 33028721]
  28. BMC Vet Res. 2016 May 12;12:78 [PMID: 27170307]
  29. Nat Protoc. 2010 Nov;5(11):1761-74 [PMID: 21030952]
  30. Viruses. 2014 Aug 07;6(8):3019-54 [PMID: 25105277]
  31. J Virol Methods. 2017 Oct;248:207-211 [PMID: 28760649]
  32. J Gen Virol. 2010 Jun;91(Pt 6):1464-72 [PMID: 20130136]
  33. Curr Opin Virol. 2014 Feb;4:15-23 [PMID: 24525290]
  34. Structure. 2014 Jan 7;22(1):136-48 [PMID: 24316400]
  35. J Virol. 1999 Aug;73(8):7035-8 [PMID: 10400805]
  36. PLoS Pathog. 2011 Aug;7(8):e1002240 [PMID: 21901103]
  37. Viruses. 2014 Jul 02;6(7):2571-601 [PMID: 24992230]
  38. Nat Commun. 2018 Apr 30;9(1):1736 [PMID: 29712906]
  39. Infect Genet Evol. 2016 Jul;41:262-269 [PMID: 27101783]
  40. Virus Res. 2002 Feb 26;83(1-2):1-12 [PMID: 11864737]
  41. J Virol. 2014 Nov;88(22):13173-88 [PMID: 25187547]
  42. J Virol. 1998 Mar;72(3):2150-9 [PMID: 9499071]
  43. Virology. 2008 Mar 15;372(2):221-32 [PMID: 18063004]
  44. Virus Genes. 2009 Dec;39(3):330-4 [PMID: 19826940]
  45. EMBO J. 1998 Jul 15;17(14):3899-908 [PMID: 9670007]
  46. J Virol. 2017 Jul 27;91(16): [PMID: 28592541]

MeSH Term

Distemper Virus, Canine
Glycoproteins
HEK293 Cells
Humans
Membrane Microdomains
Protein Conformation
Protein Conformation, alpha-Helical
Viral Proteins

Chemicals

Glycoproteins
Viral Proteins
protein M (glycoprotein)

Word Cloud

Created with Highcharts 10.0.0MproteinmembranemicrodomainsactivitytwobuddingPMpotentiallycellmatrixvirusmicrodomainmajorexitassemblyviralcaninedistemperrationallyinteractionformationproductionsystemfinelyCollectivelycornerstonehigheroligomersestilllatestagesmorbilliviralmorbillivirusmultimericclinicallyrelevantparamyxovirusesorchestratesparticlesplasmaidentifiedwithinCDVassumingα-helixstructuresessentialRemarkablydesignedmutantsE89R1L239D2preservedproperfoldingdimerizationnucleocapsidlocalizationdeformationvirus-likeparticlewellinfectiousvirionsmonitoredusingbudding-complementationsharpcontraststronglyimpairedimportancerasterimagecorrelationspectroscopyRICSrevealedcontributedtunemobilityspecificallydatahighlightedbudding-primingspatiallydiscretecoordinatingproductiveDespiteavailabilityefficientvaccinesmorbillivirusesg[CDV]measles[MeV]causehealthimpairmentsAlthoughantiviralsmaysupportvaccinationcampaignsapprovedinhibitorsdatelackingTargetinglifecycleirepresentsviableoptioncounteractinfectionscontributorassumedassembledimersassociateformengineeredvariantsmodificationslocatedimer-dimerinterfacesresultsspotlightimpactsuggestroletunedhigh-orderoligomerregulatingfindingshighlightnovelattractivetargetsdrugdesignOligomerizationCellEgressControlledTwoMicrodomainsCanineDistemperVirusMatrixProteinM-MVLPsdynamicssurface

Similar Articles

Cited By (1)