Evaluating the association between extreme heat and mortality in urban Southwestern Ontario using different temperature data sources.

Kristin K Clemens, Alexandra M Ouédraogo, Lihua Li, James A Voogt, Jason Gilliland, E Scott Krayenhoff, Sylvie Leroyer, Salimah Z Shariff
Author Information
  1. Kristin K Clemens: ICES, Toronto, ON, Canada. kristin.clemens@sjhc.london.on.ca. ORCID
  2. Alexandra M Ouédraogo: ICES, Toronto, ON, Canada.
  3. Lihua Li: ICES, Toronto, ON, Canada.
  4. James A Voogt: Department of Geography, Western University, London, ON, Canada.
  5. Jason Gilliland: Department of Epidemiology, Western University, London, ON, Canada.
  6. E Scott Krayenhoff: School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
  7. Sylvie Leroyer: Meteorological Research Division, Environment and Climate Change Canada, Gatineau, Canada.
  8. Salimah Z Shariff: ICES, Toronto, ON, Canada.

Abstract

Urban areas have complex thermal distribution. We examined the association between extreme temperature and mortality in urban Ontario, using two temperature data sources: high-resolution and weather station data. We used distributed lag non-linear Poisson models to examine census division-specific temperature-mortality associations between May and September 2005-2012. We used random-effect multivariate meta-analysis to pool results, adjusted for air pollution and temporal trends, and presented risks at the 99th percentile compared to minimum mortality temperature. As additional analyses, we varied knots, examined associations using different temperature metrics (humidex and minimum temperature), and explored relationships using different referent values (most frequent temperature, 75th percentile of temperature distribution). Weather stations yielded lower temperatures across study months. U-shaped associations between temperature and mortality were observed using both high-resolution and weather station data. Temperature-mortality relationships were not statistically significant; however, weather stations yielded estimates with wider confidence intervals. Similar findings were noted in additional analyses. In urban environmental health studies, high-resolution temperature data is ideal where station observations do not fully capture population exposure or where the magnitude of exposure at a local level is important. If focused upon temperature-mortality associations using time series, either source produces similar temperature-mortality relationships.

References

  1. JAMA. 2014 Dec 24-31;312(24):2659-67 [PMID: 25536257]
  2. Int J Biometeorol. 2016 Jan;60(1):73-83 [PMID: 25972307]
  3. Environ Health. 2009 Sep 16;8:40 [PMID: 19758453]
  4. PLoS Med. 2015 Oct 06;12(10):e1001885 [PMID: 26440803]
  5. J Air Waste Manag Assoc. 2017 Jan;67(1):96-104 [PMID: 28001123]
  6. Environ Health. 2014 Feb 03;13(1):5 [PMID: 24484632]
  7. N Engl J Med. 2019 Aug 22;381(8):705-715 [PMID: 31433918]
  8. Can J Public Health. 2012 Apr 30;103(8 Suppl 2):S12-6 [PMID: 23618065]
  9. Int J Public Health. 2010 Apr;55(2):113-21 [PMID: 19771392]
  10. Arch Intern Med. 2007 Nov 12;167(20):2170-6 [PMID: 17698676]
  11. Environ Health Perspect. 2011 Dec;119(12):1719-25 [PMID: 21827978]
  12. Environ Res. 2013 Jan;120:55-62 [PMID: 23026801]
  13. Diabetes Care. 2002 Mar;25(3):512-6 [PMID: 11874939]
  14. Environ Health Perspect. 2016 Oct;124(10):1554-1559 [PMID: 27258598]
  15. Health Place. 2019 Nov;60:102228 [PMID: 31654921]
  16. Lancet. 2015 Jul 25;386(9991):369-75 [PMID: 26003380]
  17. CMAJ Open. 2016 Feb 02;4(1):E48-58 [PMID: 27280114]
  18. Nat Clim Chang. 2015 Nov;5:988-991 [PMID: 26640524]
  19. Stat Med. 2010 Sep 20;29(21):2224-34 [PMID: 20812303]
  20. Nat Commun. 2019 Oct 11;10(1):4640 [PMID: 31604931]
  21. Environ Epidemiol. 2019 Oct 14;3(5):e072 [PMID: 33195965]
  22. J Expo Sci Environ Epidemiol. 2019 Oct;29(6):777-789 [PMID: 30538298]
  23. J Affect Disord. 2014 Feb;155:154-61 [PMID: 24332428]
  24. Chronic Dis Inj Can. 2013 Jun;33(3):160-6 [PMID: 23735455]
  25. Int J Epidemiol. 2019 Aug 1;48(4):1101-1112 [PMID: 30815699]
  26. Open Med. 2007 Apr 14;1(1):e18-26 [PMID: 20101286]
  27. Environ Health. 2014 Oct 28;13:89 [PMID: 25352015]
  28. Environ Res. 2015 Jan;136:449-61 [PMID: 25460667]
  29. Environ Health. 2012 Mar 25;11:16 [PMID: 22443423]
  30. Environ Health. 2019 Apr 18;18(1):35 [PMID: 30999920]
  31. COPD. 2009 Oct;6(5):388-94 [PMID: 19863368]
  32. Environ Health Perspect. 2013 Feb;121(2):197-204 [PMID: 23164621]
  33. Environ Res. 2016 Nov;151:610-617 [PMID: 27611992]

Grants

  1. /CIHR

MeSH Term

Adolescent
Adult
Aged
Air Pollution
Child
Child, Preschool
Data Collection
Databases, Factual
Extreme Heat
Female
Humans
Infant
Male
Middle Aged
Mortality
Ontario
Poisson Distribution
Urban Population
Young Adult

Word Cloud

Created with Highcharts 10.0.0temperatureusingdatamortalityassociationsurbanhigh-resolutionweatherstationtemperature-mortalitydifferentrelationshipsdistributionexaminedassociationextremeOntariousedpercentileminimumadditionalanalysesstationsyieldedexposureUrbanareascomplexthermaltwosources:distributedlagnon-linearPoissonmodelsexaminecensusdivision-specificMaySeptember2005-2012random-effectmultivariatemeta-analysispoolresultsadjustedairpollutiontemporaltrendspresentedrisks99thcomparedvariedknotsmetricshumidexexploredreferentvaluesfrequent75thWeatherlowertemperaturesacrossstudymonthsU-shapedobservedTemperature-mortalitystatisticallysignificanthoweverestimateswiderconfidenceintervalsSimilarfindingsnotedenvironmentalhealthstudiesidealobservationsfullycapturepopulationmagnitudelocallevelimportantfocusedupontimeserieseithersourceproducessimilarEvaluatingheatSouthwesternsources

Similar Articles

Cited By