Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes.

Juan A Marín-Jiménez, Anna Capasso, Matthew S Lewis, Stacey M Bagby, Sarah J Hartman, Jeremy Shulman, Natalie M Navarro, Hui Yu, Chris J Rivard, Xiaoguang Wang, Jessica C Barkow, Degui Geng, Adwitiya Kar, Ashley Yingst, Dejene M Tufa, James T Dolan, Patrick J Blatchford, Brian M Freed, Raul M Torres, Eduardo Davila, Jill E Slansky, Roberta Pelanda, S Gail Eckhardt, Wells A Messersmith, Jennifer R Diamond, Christopher H Lieu, Michael R Verneris, Jing H Wang, Katja Kiseljak-Vassiliades, Todd M Pitts, Julie Lang
Author Information
  1. Juan A Marín-Jiménez: Department of Medical Oncology, Catalan Institute of Oncology (ICO-L'Hospitalet), Barcelona, Spain.
  2. Anna Capasso: Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States.
  3. Matthew S Lewis: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  4. Stacey M Bagby: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  5. Sarah J Hartman: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  6. Jeremy Shulman: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  7. Natalie M Navarro: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  8. Hui Yu: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  9. Chris J Rivard: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  10. Xiaoguang Wang: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  11. Jessica C Barkow: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  12. Degui Geng: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  13. Adwitiya Kar: Division of Endocrinology, School of Medicine, University of Colorado, Aurora, CO, United States.
  14. Ashley Yingst: Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States.
  15. Dejene M Tufa: Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States.
  16. James T Dolan: Rocky Vista College of Osteopathic Medicine - OMS3, Rocky Vista University, Parker, CO, United States.
  17. Patrick J Blatchford: Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States.
  18. Brian M Freed: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  19. Raul M Torres: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  20. Eduardo Davila: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  21. Jill E Slansky: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  22. Roberta Pelanda: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  23. S Gail Eckhardt: Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States.
  24. Wells A Messersmith: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  25. Jennifer R Diamond: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  26. Christopher H Lieu: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  27. Michael R Verneris: Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, United States.
  28. Jing H Wang: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.
  29. Katja Kiseljak-Vassiliades: University of Colorado Cancer Center, Aurora, CO, United States.
  30. Todd M Pitts: Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, CO, United States.
  31. Julie Lang: Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.

Abstract

Over the past decade, immunotherapies have revolutionized the treatment of cancer. Although the success of immunotherapy is remarkable, it is still limited to a subset of patients. More than 1500 clinical trials are currently ongoing with a goal of improving the efficacy of immunotherapy through co-administration of other agents. Preclinical, small-animal models are strongly desired to increase the pace of scientific discovery, while reducing the cost of combination drug testing in humans. Human immune system (HIS) mice are highly immune-deficient mouse recipients rtpeconstituted with human hematopoietic stem cells. These HIS-mice are capable of growing human tumor cell lines and patient-derived tumor xenografts. This model allows rapid testing of multiple, immune-related therapeutics for tumors originating from unique clinical samples. Using a cord blood-derived HIS-BALB/c-Rag2Il2rγSIRPα (BRGS) mouse model, we summarize our experiments testing immune checkpoint blockade combinations in these mice bearing a variety of human tumors, including breast, colorectal, pancreatic, lung, adrenocortical, melanoma and hematological malignancies. We present in-depth characterization of the kinetics and subsets of the HIS in lymph and non-lymph organs and relate these to protocol development and immune-related treatment responses. Furthermore, we compare the phenotype of the HIS in lymph tissues and tumors. We show that the immunotype and amount of tumor infiltrating leukocytes are widely-variable and that this phenotype is tumor-dependent in the HIS-BRGS model. We further present flow cytometric analyses of immune cell subsets, activation state, cytokine production and inhibitory receptor expression in peripheral lymph organs and tumors. We show that responding tumors bear human infiltrating T cells with a more inflammatory signature compared to non-responding tumors, similar to reports of "responding" patients in human immunotherapy clinical trials. Collectively these data support the use of HIS mice as a preclinical model to test combination immunotherapies for human cancers, if careful attention is taken to both protocol details and data analysis.

Keywords

References

  1. Oncogene. 2016 Jan 21;35(3):290-300 [PMID: 25893296]
  2. Lancet Oncol. 2020 Sep;21(9):e419-e430 [PMID: 32888471]
  3. J Clin Endocrinol Metab. 2020 Jan 1;105(1): [PMID: 31513709]
  4. J Virol. 2018 Oct 12;92(21): [PMID: 30089703]
  5. Nat Rev Clin Oncol. 2014 Sep;11(9):509-24 [PMID: 25001465]
  6. Front Immunol. 2017 Dec 08;8:1709 [PMID: 29276513]
  7. J Immunother Cancer. 2020 Mar;8(1): [PMID: 32217760]
  8. Cancers (Basel). 2020 Apr 30;12(5): [PMID: 32365882]
  9. Life Sci Alliance. 2019 Apr 1;2(2): [PMID: 30936185]
  10. Leukemia. 2010 Oct;24(10):1785-8 [PMID: 20686503]
  11. PLoS One. 2018 Nov 2;13(11):e0206223 [PMID: 30388137]
  12. Int Immunol. 2007 Jul;19(7):813-24 [PMID: 17606980]
  13. Hum Immunol. 2009 Oct;70(10):790-802 [PMID: 19524633]
  14. Haematologica. 2016 Jan;101(1):5-19 [PMID: 26721800]
  15. Nat Med. 2018 Aug;24(8):1178-1191 [PMID: 29942093]
  16. Oncotarget. 2016 Feb 9;7(6):6448-59 [PMID: 26824989]
  17. Nat Methods. 2018 Aug;15(8):623-630 [PMID: 30065364]
  18. Annu Rev Immunol. 2019 Apr 26;37:457-495 [PMID: 30676822]
  19. Chest. 2013 Jan;143(1):146-151 [PMID: 22847040]
  20. Am Soc Clin Oncol Educ Book. 2020 May;40:e344-e350 [PMID: 32511030]
  21. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13224-9 [PMID: 21788504]
  22. J Immunol. 2014 Jul 15;193(2):587-96 [PMID: 24943216]
  23. Biochem Pharmacol. 2020 Apr;174:113671 [PMID: 31634456]
  24. Cell Res. 2020 Apr;30(4):285-299 [PMID: 31974523]
  25. J Immunol. 2011 Oct 1;187(7):3895-903 [PMID: 21876039]
  26. MAbs. 2014 Jul-Aug;6(4):968-77 [PMID: 24870377]
  27. Cell Rep. 2020 May 5;31(5):107588 [PMID: 32375033]
  28. Nat Protoc. 2020 Jan;15(1):15-39 [PMID: 31853056]
  29. Cell. 2017 Sep 7;170(6):1120-1133.e17 [PMID: 28803728]
  30. Front Immunol. 2020 Jan 10;10:3051 [PMID: 31998319]
  31. Clin Exp Immunol. 2008 Nov;154(2):270-84 [PMID: 18785974]
  32. Cell. 2019 Jan 24;176(3):677 [PMID: 30682374]
  33. J Exp Med. 2009 Jun 8;206(6):1423-34 [PMID: 19487422]
  34. Toxicol Sci. 2019 May 1;169(1):194-208 [PMID: 30850839]
  35. J Immunother Cancer. 2019 Oct 26;7(1):278 [PMID: 31655605]
  36. PLoS Pathog. 2016 May 17;12(5):e1005642 [PMID: 27186886]
  37. J Immunol. 2004 Mar 1;172(5):2731-8 [PMID: 14978070]
  38. Sci Rep. 2016 Aug 02;6:30723 [PMID: 27480578]
  39. Stem Cell Reports. 2016 Oct 11;7(4):591-601 [PMID: 27618723]
  40. Blood Adv. 2017 Dec 19;1(27):2729-2741 [PMID: 29296925]
  41. Science. 2004 Apr 2;304(5667):104-7 [PMID: 15064419]
  42. Mol Ther Oncolytics. 2019 Nov 29;16:41-52 [PMID: 31930165]
  43. J Immunol. 2005 May 15;174(10):6477-89 [PMID: 15879151]
  44. Front Immunol. 2017 Feb 06;8:86 [PMID: 28220123]
  45. Trends Immunol. 2017 Jan;38(1):20-28 [PMID: 27793572]
  46. Cancer Immunol Res. 2019 Aug;7(8):1237-1243 [PMID: 31171504]
  47. Clin Cancer Res. 2017 Jan 1;23(1):149-158 [PMID: 27458246]
  48. Front Immunol. 2018 Jan 26;9:54 [PMID: 29434589]
  49. Blood. 2002 Nov 1;100(9):3175-82 [PMID: 12384415]
  50. Clin Cancer Res. 2018 Oct 15;24(20):4960-4967 [PMID: 29685882]
  51. Mol Carcinog. 2020 Jul;59(7):862-870 [PMID: 32386086]
  52. Stem Cell Reports. 2015 Feb 10;4(2):171-80 [PMID: 25601207]
  53. Nat Commun. 2017 Sep 27;8(1):707 [PMID: 28955032]
  54. EMBO Mol Med. 2020 Jul 7;12(7):e8662 [PMID: 32578942]
  55. Blood. 2011 Mar 17;117(11):3076-86 [PMID: 21252091]
  56. Nat Rev Clin Oncol. 2016 Jun;13(6):394 [PMID: 27118494]
  57. Ann Oncol. 2016 Jul;27(7):1190-8 [PMID: 26912558]
  58. BMC Cancer. 2020 Nov 4;20(1):1063 [PMID: 33148223]
  59. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9626-E9634 [PMID: 29078283]
  60. Annu Rev Immunol. 2001;19:565-94 [PMID: 11244047]
  61. Immunobiology. 2014 Feb;219(2):131-7 [PMID: 24094417]
  62. Exp Mol Med. 2018 Aug 7;50(8):1-9 [PMID: 30089794]
  63. Br J Cancer. 2019 Jul;121(2):101-108 [PMID: 31231121]
  64. Immunol Rev. 2016 Jan;269(1):118-29 [PMID: 26683149]
  65. Microbiol Spectr. 2019 Mar;7(2): [PMID: 30953434]
  66. Annu Rev Pathol. 2017 Jan 24;12:187-215 [PMID: 27959627]
  67. J Immunother Cancer. 2018 Dec 4;6(1):140 [PMID: 30514385]
  68. Blood. 2013 Feb 21;121(8):1316-25 [PMID: 23293079]
  69. Nat Commun. 2019 Jan 21;10(1):366 [PMID: 30664659]
  70. J Intern Med. 2018 Feb;283(2):110-120 [PMID: 29071761]
  71. J Immunother Cancer. 2019 Feb 8;7(1):37 [PMID: 30736857]
  72. Curr Opin Virol. 2016 Aug;19:56-64 [PMID: 27447446]
  73. Cancer Immunol Res. 2017 Jan;5(1):3-8 [PMID: 28052991]
  74. Sci Transl Med. 2012 Mar 14;4(125):125ra30 [PMID: 22422991]
  75. Int J Mol Sci. 2020 Jun 09;21(11): [PMID: 32526987]
  76. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2946-51 [PMID: 23382184]
  77. Cell Immunol. 2017 Nov;321:8-17 [PMID: 28838763]
  78. J Immunol. 2013 Mar 1;190(5):2090-101 [PMID: 23335750]
  79. Sci Rep. 2016 Jun 21;6:28093 [PMID: 27323875]
  80. Int Immunol. 2009 Jul;21(7):843-58 [PMID: 19515798]
  81. Cancers (Basel). 2020 Jul 15;12(7): [PMID: 32679920]
  82. Transl Oncol. 2020 Mar;13(3):100745 [PMID: 32092671]
  83. Cell. 2016 Dec 1;167(6):1540-1554.e12 [PMID: 27912061]
  84. Blood. 2003 Oct 1;102(7):2522-31 [PMID: 12791667]
  85. Clin Immunol. 2010 Apr;135(1):84-98 [PMID: 20096637]
  86. Breast Cancer Res. 2018 Sep 5;20(1):108 [PMID: 30185216]
  87. Am J Clin Exp Urol. 2019 Oct 15;7(5):313-320 [PMID: 31763362]
  88. Cancer Res. 2016 Nov 1;76(21):6153-6158 [PMID: 27587540]
  89. Eur J Immunol. 2019 Jun;49(6):954-965 [PMID: 30888052]
  90. Trends Immunol. 2020 Aug;41(8):652-664 [PMID: 32654925]
  91. Nature. 2017 May 4;545(7652):60-65 [PMID: 28397821]
  92. Cancer Sci. 2018 Oct;109(10):3032-3042 [PMID: 30066977]
  93. NPJ Genom Med. 2017;2: [PMID: 28819565]
  94. Blood Adv. 2017 Apr 06;1(10):601-614 [PMID: 29296702]
  95. Nat Med. 2019 Mar;25(3):389-402 [PMID: 30842677]
  96. J Clin Invest. 2017 Apr 3;127(4):1392-1404 [PMID: 28240602]
  97. Mamm Genome. 2019 Jun;30(5-6):123-142 [PMID: 30847553]
  98. Annu Rev Immunol. 2013;31:635-674 [PMID: 23330956]
  99. Cancer Discov. 2018 Feb;8(2):196-215 [PMID: 29101162]
  100. N Engl J Med. 2018 Dec 6;379(23):2220-2229 [PMID: 30280641]
  101. Oncol Rep. 2010 Oct;24(4):1067-72 [PMID: 20811690]
  102. Cancer Immunol Res. 2018 Dec;6(12):1445-1452 [PMID: 30510057]
  103. J Immunother Cancer. 2019 Aug 5;7(1):205 [PMID: 31383005]
  104. Nat Commun. 2018 Nov 28;9(1):5031 [PMID: 30487575]
  105. Blood. 2010 Nov 18;116(20):4158-67 [PMID: 20671122]
  106. Nat Rev Immunol. 2018 Aug;18(8):498-513 [PMID: 29743717]
  107. Cell. 2018 Oct 4;175(2):416-428.e13 [PMID: 30245014]
  108. Clin Immunol. 2011 Jul;140(1):102-16 [PMID: 21536497]
  109. Transplantation. 2012 Dec 15;94(11):1095-102 [PMID: 23222735]
  110. Science. 2018 Mar 23;359(6382):1350-1355 [PMID: 29567705]
  111. Front Immunol. 2018 May 04;9:847 [PMID: 29780381]
  112. Cancer Discov. 2018 Nov;8(11):1358-1365 [PMID: 30309862]
  113. Immunol Cell Biol. 2015 Sep;93(8):716-26 [PMID: 25744551]
  114. Front Immunol. 2018 Apr 20;9:746 [PMID: 29755454]
  115. Ann Oncol. 2018 Jan 1;29(1):71-83 [PMID: 29069302]
  116. Cancer Immunol Res. 2019 Aug;7(8):1318-1331 [PMID: 31235619]
  117. Front Immunol. 2020 Mar 04;11:364 [PMID: 32194568]
  118. BMC Immunol. 2017 May 30;18(1):28 [PMID: 28558649]
  119. Cancer Immunol Res. 2017 Sep;5(9):790-803 [PMID: 28775208]
  120. Cancer Cell. 2019 Nov 11;36(5):471-482 [PMID: 31715131]
  121. Clin Cancer Res. 2017 Nov 1;23(21):6650-6660 [PMID: 28751450]
  122. Cell Res. 2020 Jun;30(6):507-519 [PMID: 32467593]
  123. Biol Open. 2015 Sep 09;4(10):1243-52 [PMID: 26353862]
  124. J Infect Dis. 2013 Nov;208 Suppl 2:S155-9 [PMID: 24151323]
  125. Science. 2017 Jul 28;357(6349):409-413 [PMID: 28596308]
  126. Front Immunol. 2022 Mar 11;13:867015 [PMID: 35359965]
  127. FASEB J. 2018 Mar;32(3):1537-1549 [PMID: 29146734]
  128. J Immunother Cancer. 2020 Feb;8(1): [PMID: 32034066]
  129. Immunology. 2018 May;154(1):50-61 [PMID: 29446074]
  130. Cancers (Basel). 2020 Jun 18;12(6): [PMID: 32570871]
  131. Cancer Med. 2018 Sep;7(9):4509-4516 [PMID: 30039553]
  132. Mol Oncol. 2018 Oct;12(10):1797-1810 [PMID: 30120895]

Grants

  1. R01 AI143261/NIAID NIH HHS
  2. R01 CA229174/NCI NIH HHS
  3. R33 CA191245/NCI NIH HHS
  4. K08 CA222620/NCI NIH HHS
  5. R01 CA229259/NCI NIH HHS
  6. R01 AI124474/NIAID NIH HHS

MeSH Term

Animals
Chimerism
Disease Models, Animal
Hematopoietic Stem Cell Transplantation
Heterografts
Humans
Immune System
Immunotherapy
Lymphocyte Subsets
Lymphoid Tissue
Mice
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Neoplasms
Phenotype
Xenograft Model Antitumor Assays

Word Cloud

Created with Highcharts 10.0.0humantumorsmodelimmunotherapytestingimmuneHISmicetumorclinicalcombinationHumanlymphimmunotherapiestreatmentpatientstrialsmousecellscellimmune-relatedcheckpointblockadepresentsubsetsorgansprotocolphenotypeshowinfiltratingdatapreclinicalImmunepastdecaderevolutionizedcancerAlthoughsuccessremarkablestilllimitedsubset1500currentlyongoinggoalimprovingefficacyco-administrationagentsPreclinicalsmall-animalmodelsstronglydesiredincreasepacescientificdiscoveryreducingcostdrughumanssystemhighlyimmune-deficientrecipientsrtpeconstitutedhematopoieticstemHIS-micecapablegrowinglinespatient-derivedxenograftsallowsrapidmultipletherapeuticsoriginatinguniquesamplesUsingcordblood-derivedHIS-BALB/c-Rag2Il2rγSIRPαBRGSsummarizeexperimentscombinationsbearingvarietyincludingbreastcolorectalpancreaticlungadrenocorticalmelanomahematologicalmalignanciesin-depthcharacterizationkineticsnon-lymphrelatedevelopmentresponsesFurthermorecomparetissuesimmunotypeamountleukocyteswidely-variabletumor-dependentHIS-BRGSflowcytometricanalysesactivationstatecytokineproductioninhibitoryreceptorexpressionperipheralrespondingbearTinflammatorysignaturecomparednon-respondingsimilarreports"responding"CollectivelysupportusetestcancerscarefulattentiontakendetailsanalysisTestingCancerImmunotherapySystemMouseModel:CorrelatingTreatmentResponsesChimerismTherapeuticVariablesCellPhenotypesPDXpatientderivedxenograftTMEmicroenvironmenthumanizedcorrelates

Similar Articles

Cited By