Microbial community structure and composition is associated with host species and sex in Sigmodon cotton rats.

Britton A Strickland, Mira C Patel, Meghan H Shilts, Helen H Boone, Arash Kamali, Wei Zhang, Daniel Stylos, Marina S Boukhvalova, Christian Rosas-Salazar, Shibu Yooseph, Seesandra V Rajagopala, Jorge C G Blanco, Suman R Das
Author Information
  1. Britton A Strickland: Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
  2. Mira C Patel: Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
  3. Meghan H Shilts: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  4. Helen H Boone: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  5. Arash Kamali: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  6. Wei Zhang: Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
  7. Daniel Stylos: Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
  8. Marina S Boukhvalova: Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
  9. Christian Rosas-Salazar: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  10. Shibu Yooseph: Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA.
  11. Seesandra V Rajagopala: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  12. Jorge C G Blanco: Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA. j.blanco@sigmovir.com.
  13. Suman R Das: Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. suman.r.das@vanderbilt.edu. ORCID

Abstract

BACKGROUND: The cotton rat (genus Sigmodon) is an essential small animal model for the study of human infectious disease and viral therapeutic development. However, the impact of the host microbiome on infection outcomes has not been explored in this model, partly due to the lack of a comprehensive characterization of microbial communities across different cotton rat species. Understanding the dynamics of their microbiome could significantly help to better understand its role when modeling viral infections in this animal model.
RESULTS: We examined the bacterial communities of the gut and three external sites (skin, ear, and nose) of two inbred species of cotton rats commonly used in research (S. hispidus and S. fulviventer) by using 16S rRNA gene sequencing, constituting the first comprehensive characterization of the cotton rat microbiome. We showed that S. fulviventer maintained higher alpha diversity and richness than S. hispidus at external sites (skin, ear, nose), but there were no differentially abundant genera. However, S. fulviventer and S. hispidus had distinct fecal microbiomes composed of several significantly differentially abundant genera. Whole metagenomic shotgun sequencing of fecal samples identified species-level differences between S. hispidus and S. fulviventer, as well as different metabolic pathway functions as a result of differential host microbiome contributions. Furthermore, the microbiome composition of the external sites showed significant sex-based differences while fecal communities were not largely different.
CONCLUSIONS: Our study shows that host genetic background potentially exerts homeostatic pressures, resulting in distinct microbiomes for two different inbred cotton rat species. Because of the numerous studies that have uncovered strong relationships between host microbiome, viral infection outcomes, and immune responses, our findings represent a strong contribution for understanding the impact of different microbial communities on viral pathogenesis. Furthermore, we provide novel cotton rat microbiome data as a springboard to uncover the full therapeutic potential of the microbiome against viral infections.

Keywords

References

  1. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  2. J Med Virol. 1988 Oct;26(2):153-62 [PMID: 3183639]
  3. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  4. Nucleic Acids Res. 2007;35(21):7188-96 [PMID: 17947321]
  5. Science. 2019 Jul 12;365(6449): [PMID: 31296739]
  6. J Virol. 1986 Mar;57(3):721-8 [PMID: 2419587]
  7. Med Dosw Mikrobiol. 1987;39(1):33-42 [PMID: 3035295]
  8. mBio. 2019 Feb 5;10(1): [PMID: 30723123]
  9. Virol J. 2016 May 04;13:74 [PMID: 27142375]
  10. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  11. Bioinformatics. 2015 Mar 15;31(6):926-32 [PMID: 25398609]
  12. J Infect Dis. 2010 May 1;201(9):1414-21 [PMID: 20307206]
  13. Infect Immun. 2008 Mar;76(3):907-15 [PMID: 18160481]
  14. Cell Host Microbe. 2016 May 11;19(5):731-43 [PMID: 27173935]
  15. J Virol. 1987 Jun;61(6):1851-4 [PMID: 3553614]
  16. Curr Opin Microbiol. 2000 Feb;3(1):79-85 [PMID: 10679416]
  17. Nat Methods. 2012 Jun 10;9(8):811-4 [PMID: 22688413]
  18. Microbiol Res. 2008;163(6):663-70 [PMID: 19216105]
  19. Pediatrics. 1997 Mar;99(3):454-61 [PMID: 9041304]
  20. Nat Biotechnol. 2015 Oct;33(10):1103-8 [PMID: 26414350]
  21. Appl Environ Microbiol. 2019 Aug 29;85(18): [PMID: 31350316]
  22. Cell. 2019 Sep 5;178(6):1313-1328.e13 [PMID: 31491384]
  23. PLoS One. 2016 Nov 4;11(11):e0166336 [PMID: 27814404]
  24. J Infect. 2017 Jun;74 Suppl 1:S84-S88 [PMID: 28646967]
  25. J Med Virol. 1995 May;46(1):35-9 [PMID: 7623004]
  26. Microbiome. 2017 Aug 18;5(1):105 [PMID: 28821301]
  27. Brief Bioinform. 2009 Sep;10(5):556-68 [PMID: 19679825]
  28. Front Microbiol. 2019 Jul 03;10:1305 [PMID: 31333592]
  29. Am J Pathol. 1978 Dec;93(3):771-91 [PMID: 362946]
  30. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  31. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  32. J Gen Virol. 2001 Dec;82(Pt 12):2881-2888 [PMID: 11714962]
  33. Science. 2011 Oct 14;334(6053):249-52 [PMID: 21998395]
  34. Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5354-9 [PMID: 21402903]
  35. Environ Microbiol Rep. 2015 Dec;7(6):929-35 [PMID: 26306992]
  36. Genome Res. 2015 Oct;25(10):1558-69 [PMID: 26260972]
  37. J Allergy Clin Immunol. 2018 Nov;142(5):1447-1456.e9 [PMID: 29330010]
  38. Nucleic Acids Res. 2018 Jan 4;46(D1):D633-D639 [PMID: 29059334]
  39. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  40. Am J Physiol Endocrinol Metab. 2018 Nov 1;315(5):E961-E972 [PMID: 30016149]
  41. Microbiology (Reading). 2002 Jan;148(Pt 1):257-266 [PMID: 11782518]
  42. Bull World Health Organ. 1975;52(4-6):501-6 [PMID: 182400]
  43. BMC Immunol. 2013 Aug 15;14:40 [PMID: 23947615]
  44. J Infect Dis. 2002 Dec 15;186(12):1713-7 [PMID: 12447755]
  45. J Virol. 2013 Feb;87(4):2036-45 [PMID: 23192875]
  46. Nat Genet. 2016 Nov;48(11):1413-1417 [PMID: 27694960]
  47. Mod Pathol. 2007 Jan;20(1):108-19 [PMID: 17143259]
  48. J Clin Invest. 2009 Sep;119(9):2475-87 [PMID: 19729845]
  49. J Virol. 2005 Jul;79(14):8894-903 [PMID: 15994783]
  50. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  51. Comp Med. 2010 Oct;60(5):336-47 [PMID: 21262117]
  52. Trials Vaccinol. 2014;3:52-60 [PMID: 25328560]
  53. Mucosal Immunol. 2017 Nov;10(6):1569-1580 [PMID: 28295020]
  54. J Virol. 2006 Feb;80(3):1130-9 [PMID: 16414990]
  55. J Virol. 2003 Jan;77(1):150-8 [PMID: 12477820]
  56. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  57. J Virol. 2005 May;79(10):6035-42 [PMID: 15857989]
  58. F1000Res. 2020 Feb 5;9: [PMID: 32076547]
  59. Nat Methods. 2018 Nov;15(11):962-968 [PMID: 30377376]
  60. Int Immunopharmacol. 2013 Oct;17(2):373-82 [PMID: 23838113]
  61. Bone Marrow Transplant. 2002 Jan;29(2):117-20 [PMID: 11850705]
  62. Biologicals. 2009 Jun;37(3):152-9 [PMID: 19394861]
  63. Sci Rep. 2018 Jul 27;8(1):11318 [PMID: 30054492]
  64. Emerg Infect Dis. 2007 Aug;13(8):1158-65 [PMID: 17953085]
  65. ISME J. 2007 May;1(1):56-66 [PMID: 18043614]
  66. mBio. 2019 Jul 2;10(4): [PMID: 31266874]
  67. Am J Respir Crit Care Med. 2016 May 15;193(10):1180-3 [PMID: 27174483]
  68. Science. 2016 Jul 22;353(6297):380-2 [PMID: 27463672]
  69. Eur J Immunol. 2018 Jan;48(1):39-49 [PMID: 28776643]
  70. J Allergy Clin Immunol. 2014 Apr;133(4):1220-2 [PMID: 24365140]
  71. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 [PMID: 19004872]
  72. Comp Med. 2015 Aug;65(4):315-26 [PMID: 26310461]
  73. J Vector Ecol. 2009 Jun;34(1):9-21 [PMID: 20836801]
  74. Nutrients. 2018 Jul 29;10(8): [PMID: 30060606]
  75. Can J Zool. 2009 Mar 1;87(3):211-220 [PMID: 20407590]
  76. Genes (Basel). 2018 Nov 13;9(11): [PMID: 30428546]
  77. Benef Microbes. 2015;6(5):631-9 [PMID: 26322544]
  78. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17994-9 [PMID: 19004758]
  79. Vector Borne Zoonotic Dis. 2005 Fall;5(3):288-92 [PMID: 16187899]
  80. Viral Immunol. 2000;13(2):231-6 [PMID: 10893002]
  81. J Infect Dis. 2017 Jan 1;215(1):34-41 [PMID: 27803175]
  82. J Gen Virol. 2005 Oct;86(Pt 10):2823-2830 [PMID: 16186238]
  83. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  84. Nature. 2018 Mar 8;555(7695):210-215 [PMID: 29489753]
  85. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]

Grants

  1. R01 AI125215/NIAID NIH HHS
  2. R01 HL146401/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0microbiomeScottonratviralhostdifferentcommunitiesspecieshispidusfulviventerSigmodonmodelexternalsitesfecalanimalstudytherapeuticHoweverimpactinfectionoutcomescomprehensivecharacterizationmicrobialsignificantlyinfectionsskinearnosetwoinbredrats16SrRNAgenesequencingshoweddifferentiallyabundantgeneradistinctmicrobiomesdifferencesFurthermorecompositionstrongBACKGROUND:genusessentialsmallhumaninfectiousdiseasedevelopmentexploredpartlyduelackacrossUnderstandingdynamicshelpbetterunderstandrolemodelingRESULTS:examinedbacterialgutthreecommonlyusedresearchusingconstitutingfirstmaintainedhigheralphadiversityrichnesscomposedseveralWholemetagenomicshotgunsamplesidentifiedspecies-levelwellmetabolicpathwayfunctionsresultdifferentialcontributionssignificantsex-basedlargelyCONCLUSIONS:showsgeneticbackgroundpotentiallyexertshomeostaticpressuresresultingnumerousstudiesuncoveredrelationshipsimmuneresponsesfindingsrepresentcontributionunderstandingpathogenesisprovidenoveldataspringboarduncoverfullpotentialMicrobialcommunitystructureassociatedsexCottonGutMetagenomicsMicrobiomeRespiratorySkin

Similar Articles

Cited By