Changes in white adipose tissue gene expression in a randomized control trial of dieting obese men with lowered serum testosterone alone or in combination with testosterone treatment.

Mathis Grossmann, Mark Ng Tang Fui, Tian Nie, Rudolf Hoermann, Michele V Clarke, Ada S Cheung, Jeffrey D Zajac, Rachel A Davey
Author Information
  1. Mathis Grossmann: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  2. Mark Ng Tang Fui: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  3. Tian Nie: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  4. Rudolf Hoermann: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  5. Michele V Clarke: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.
  6. Ada S Cheung: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  7. Jeffrey D Zajac: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. ORCID
  8. Rachel A Davey: Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia. r.davey@unimelb.edu.au. ORCID

Abstract

PURPOSE: The aim of this study was to determine early weight loss-associated changes in subcutaneous abdominal white adipose tissue (WAT) gene expression in obese men with lowered serum testosterone by RNA next-generation sequencing.
METHODS: Fourteen men, mean age (IQR) 51.6 years (43.4-54.5), BMI 38.3 kg/m (34.6-40.8) and total testosterone 8.4 nmol/L (7.5-9.5) provided subcutaneous WAT samples at baseline and after 2 weeks of a very low energy diet.
RESULTS: Body weight loss was similar in participants receiving testosterone (n = 6), -5.27 kg [95% CI -6.17; -4.26], and placebo (n = 8), -4.57 kg [95% CI -6.10; -3.55], p = 0.86. In placebo-treated men, of the 14,410 genes expressed in subcutaneous WAT, four genes, Angiopoietin-like 4, Semaphorin 3 G, Neuropilin 2 and Angiopoietin 4, were upregulated (adjusted false discovery rate P < 0.05). In an exploratory analysis comparing men receiving testosterone and placebo, the most-upregulated gene in the testosterone group (exploratory p < 0.0005) was the neuropeptide y receptor 2.
CONCLUSIONS: In obese men, dieting is associated with upregulation of WAT-expressed Angiopoietin-like 4, a secreted protein that regulates lipid metabolism, Semaphorin 3 G, a proposed adipocyte differentiation factor and secreted adipokine, and its receptor Neuropilin 2, as well as Angiopoietin 4, a vascular integrity factor. In an exploratory analysis, testosterone was associated with the upregulation of neuropeptide y receptor 2, a receptor involved in appetite regulation. Further studies are needed to confirm these observations and their potential biological implications.
TRIAL REGISTRATION: clinicaltrials.gov, Identifier NCT01616732, Registration date: June 8, 2012.

Keywords

Associated Data

ClinicalTrials.gov | NCT01616732

References

  1. A. Tajar, G. Forti, T.W. O’Neill, D.M. Lee, A.J. Silman, J.D. Finn, G. Bartfai, S. Boonen, F.F. Casanueva, A. Giwercman, T.S. Han, K. Kula, F. Labrie, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, I.T. Huhtaniemi, F.C. Wu,, Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 95(4), 1810–18818 (2010). https://doi.org/10.1210/jc.2009-1796 [DOI: 10.1210/jc.2009-1796]
  2. G.K. Jasuja, S. Bhasin, J.I. Reisman, J.T. Hanlon, D.R. Miller, A.P. Morreale, L.M. Pogach, F.E. Cunningham, A. Park, D.R. Berlowitz, A.J. Rose, Who gets testosterone? Patient characteristics associated with testosterone prescribing in the veteran affairs system: a cross-sectional study. J. Gen. Intern. Med. 32(3), 304–311 (2017). https://doi.org/10.1007/s11606-016-3940-7 [DOI: 10.1007/s11606-016-3940-7]
  3. A.M. Isidori, E. Giannetta, E.A. Greco, D. Gianfrilli, V. Bonifacio, A. Isidori, A. Lenzi, A. Fabbri, Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin. Endocrinol. (Oxf) 63(3), 280–293 (2005) [DOI: 10.1111/j.1365-2265.2005.02339.x]
  4. G. Corona, V.A. Giagulli, E. Maseroli, L. Vignozzi, A. Aversa, M. Zitzmann, F. Saad, E. Mannucci, M. Maggi, THERAPY OF ENDOCRINE DISEASE: Testosterone supplementation and body composition: results from a meta-analysis study. Eur. J. Endocrinol. 174(3), R99–R116 (2016). https://doi.org/10.1530/EJE-15-0262 [DOI: 10.1530/EJE-15-0262]
  5. M. Grossmann, Hypogonadism and male obesity: focus on unresolved questions. Clin. Endocrinol. (Oxf) 89(1), 11–211 (2018). https://doi.org/10.1111/cen.13723 [DOI: 10.1111/cen.13723]
  6. M. Ng Tang Fui, L.A. Prendergast, P. Dupuis, M. Raval, B.J. Strauss, J.D. Zajac, M. Grossmann, Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med. 14(1), 153 (2016). https://doi.org/10.1186/s12916-016-0700-9 [DOI: 10.1186/s12916-016-0700-9]
  7. F. Saad, G. Doros, K.S. Haider, A. Haider,, Differential effects of 11 years of long-term injectable testosterone undecanoate therapy on anthropometric and metabolic parameters in hypogonadal men with normal weight, overweight and obesity in comparison with untreated controls: real-world data from a controlled registry study. Int. J. Obes (Lond) 44(6), 1264–12278 (2020). https://doi.org/10.1038/s41366-019-0517-7 [DOI: 10.1038/s41366-019-0517-7]
  8. A. Tchernof, D. Brochu, I. Maltais-Payette, M.F. Mansour, G.B. Marchand, A.M. Carreau, J. Kapeluto, Androgens and the regulation of adiposity and body fat distribution in humans. Compr. Physiol. 8(4), 1253–1290 (2018). https://doi.org/10.1002/cphy.c170009 [DOI: 10.1002/cphy.c170009]
  9. J.S. Finkelstein, H. Lee, S.A. Burnett-Bowie, J.C. Pallais, E.W. Yu, L.F. Borges, B.F. Jones, C.V. Barry, K.E. Wulczyn, B.J. Thomas, B.Z. Leder, Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369(11), 1011–1022 (2013). https://doi.org/10.1056/NEJMoa1206168 [DOI: 10.1056/NEJMoa1206168]
  10. M. Ng Tang Fui, R. Hoermann, M. Grossmann, Effect of testosterone treatment on adipokines and gut hormones in obese men on a hypocaloric diet. J. Endocr. Soc. 1(4), 302–312 (2017). https://doi.org/10.1210/js.2017-00062 [DOI: 10.1210/js.2017-00062]
  11. A.S. Cheung, C. de Rooy, I. Levinger, K. Rana, M.V. Clarke, J.M. How, A. Garnham, C. McLean, J.D. Zajac, R.A. Davey, M. Grossmann, Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. J. Steroid Biochem. Mol. Biol. 174, 56–64 (2017). https://doi.org/10.1016/j.jsbmb.2017.07.029 [DOI: 10.1016/j.jsbmb.2017.07.029]
  12. M.D. Robinson, D.J. McCarthy, G.K. Smyth,, EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–1340 (2010). https://doi.org/10.1093/bioinformatics/btp616 [DOI: 10.1093/bioinformatics/btp616]
  13. Y. Liao, G.K. Smyth, W. Shi,, FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–9230 (2014). https://doi.org/10.1093/bioinformatics/btt656 [DOI: 10.1093/bioinformatics/btt656]
  14. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. Royal. Stat. Soc. Ser. B. 57(1), 289–300 (1995)
  15. S.K. Koliwad, N.E. Gray, J.C. Wang, Angiopoietin-like 4 (Angptl4): a glucocorticoid-dependent gatekeeper of fatty acid flux during fasting. Adipocyte 1(3), 182–187 (2012). https://doi.org/10.4161/adip.20787 [DOI: 10.4161/adip.20787]
  16. S. Kersten, S. Mandard, N.S. Tan, P. Escher, D. Metzger, P. Chambon, F.J. Gonzalez, B. Desvergne, W. Wahli,, Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem 275(37), 28488–28493 (2000). https://doi.org/10.1074/jbc.M004029200 [DOI: 10.1074/jbc.M004029200]
  17. P.M.M. Ruppert, C. Michielsen, E.J. Hazebroek, A. Pirayesh, G. Olivecrona, L.A. Afman, S. Kersten, Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol. Metab. 40, 101033 (2020). https://doi.org/10.1016/j.molmet.2020.101033 [DOI: 10.1016/j.molmet.2020.101033]
  18. N. Franck, A. Gummesson, M. Jernas, C. Glad, P.A. Svensson, G. Guillot, M. Rudemo, F.H. Nystrom, L.M. Carlsson, B. Olsson, Identification of adipocyte genes regulated by caloric intake. J. Clin. Endocrinol. Metab. 96(2), E413–E418 (2011). https://doi.org/10.1210/jc.2009-2534 [DOI: 10.1210/jc.2009-2534]
  19. W. Liu, J. Li, M. Liu, H. Zhang, N. Wang, PPAR-gamma promotes endothelial cell migration by inducing the expression of Sema3g. J. Cell. Biochem. 116(4), 514–523 (2015). https://doi.org/10.1002/jcb.24994 [DOI: 10.1002/jcb.24994]
  20. C. Tan, N.N. Lu, C.K. Wang, D.Y. Chen, N.H. Sun, H. Lyu, J. Korbelin, W.X. Shi, K. Fukunaga, Y.M. Lu, F. Han, Endothelium-derived semaphorin 3G regulates hippocampal synaptic structure and plasticity via neuropilin-2/PlexinA4. Neuron 101(5), 920–937 e913 (2019). https://doi.org/10.1016/j.neuron.2018.12.036 [DOI: 10.1016/j.neuron.2018.12.036]
  21. C. Fromm-Dornieden, S. von der Heyde, O. Lytovchenko, G. Salinas-Riester, B. Brenig, T. Beissbarth, B.G. Baumgartner, Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells. BMC Mol. Biol. 13, 9 (2012). https://doi.org/10.1186/1471-2199-13-9 [DOI: 10.1186/1471-2199-13-9]
  22. M. Liu, S. Xie, W. Liu, J. Li, C. Li, W. Huang, H. Li, J. Song, H. Zhang, Mechanism of SEMA3G knockdown-mediated attenuation of high-fat diet-induced obesity. J. Endocrinol. 244(1), 223–236 (2020). https://doi.org/10.1530/JOE-19-0029 [DOI: 10.1530/JOE-19-0029]
  23. X. Shao, M. Wang, X. Wei, S. Deng, N. Fu, Q. Peng, Y. Jiang, L. Ye, J. Xie, Y. Lin, Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity. Curr. Stem. Cell Res. Ther. 11(3), 282–289 (2016). https://doi.org/10.2174/1574888x10666150528144905 [DOI: 10.2174/1574888x10666150528144905]
  24. H.J. Lee, C.H. Cho, S.J. Hwang, H.H. Choi, K.T. Kim, S.Y. Ahn, J.H. Kim, J.L. Oh, G.M. Lee, G.Y. Koh, Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 18(11), 1200–1208 (2004). https://doi.org/10.1096/fj.03-1466com [DOI: 10.1096/fj.03-1466com]
  25. C.T. Kesler, E.R. Pereira, C.H. Cui, G.M. Nelson, D.J. Masuck, J.W. Baish, T.P. Padera,, Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J. 29(9), 3668–3677 (2015). https://doi.org/10.1096/fj.14-268920 [DOI: 10.1096/fj.14-268920]
  26. R.A. Forman, M.L. deSchoolmeester, R.J. Hurst, S.H. Wright, A.D. Pemberton, K.J. Else, The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One 7(9), e42248 (2012). https://doi.org/10.1371/journal.pone.0042248 [DOI: 10.1371/journal.pone.0042248]
  27. X. Guo, J. Li, R. Tang, G. Zhang, H. Zeng, R.J. Wood, Z. Liu, High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017, 9474896 (2017). https://doi.org/10.1155/2017/9474896 [DOI: 10.1155/2017/9474896]
  28. J. Tomas, C. Mulet, A. Saffarian, J.B. Cavin, R. Ducroc, B. Regnault, C. Kun Tan, K. Duszka, R. Burcelin, W. Wahli, P.J. Sansonetti, T. Pedron, High-fat diet modifies the PPAR-gamma pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl Acad. Sci. U.S.A. 113(40), E5934–E5943 (2016). https://doi.org/10.1073/pnas.1612559113 [DOI: 10.1073/pnas.1612559113]
  29. E. Maseroli, P. Comeglio, C. Corno, I. Cellai, S. Filippi, T. Mello, A. Galli, E. Rapizzi, L. Presenti, M. C. Truglia, F. Lotti, E. Facchiano, B. Beltrame, M. Lucchese, F. Saad, G. Rastrelli, M. Maggi, L. Vignozzi, Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J. Endocrinol. Invest. (2020). https://doi.org/10.1007/s40618-020-01381-8
  30. M. Yi, H. Li, Z. Wu, J. Yan, Q. Liu, C. Ou, M. Chen, A promising therapeutic target for metabolic diseases: neuropeptide Y receptors in humans. Cell Physiol. Biochem. 45(1), 88–107 (2018). https://doi.org/10.1159/000486225 [DOI: 10.1159/000486225]
  31. P. Naveilhan, H. Hassani, J.M. Canals, A.J. Ekstrand, A. Larefalk, V. Chhajlani, E. Arenas, K. Gedda, L. Svensson, P. Thoren, P. Ernfors, Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat. Med. 5(10), 1188–1193 (1999). https://doi.org/10.1038/13514 [DOI: 10.1038/13514]
  32. A. Sainsbury, C. Schwarzer, M. Couzens, S. Fetissov, S. Furtinger, A. Jenkins, H.M. Cox, G. Sperk, T. Hokfelt, H. Herzog,, Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc. Natl Acad. Sci. U.S.A. 99(13), 8938–8943 (2002). https://doi.org/10.1073/pnas.132043299 [DOI: 10.1073/pnas.132043299]
  33. S.S. Torekov, L.H. Larsen, G. Andersen, A. Albrechtsen, C. Glumer, K. Borch-Johnsen, T. Jorgensen, T. Hansen, O. Pedersen,, Variants in the 5’ region of the neuropeptide Y receptor Y2 gene (NPY2R) are associated with obesity in 5,971 white subjects. Diabetologia 49(11), 2653–2658 (2006). https://doi.org/10.1007/s00125-006-0425-y [DOI: 10.1007/s00125-006-0425-y]
  34. D.D. Pierroz, A.C. Aebi, I.T. Huhtaniemi, M.L. Aubert, Many LH peaks are needed to physiologically stimulate testosterone secretion: modulation by fasting and NPY. Am. J. Physiol. 276(4), E603–66010 (1999). https://doi.org/10.1152/ajpendo.1999.276.4.E603 [DOI: 10.1152/ajpendo.1999.276.4.E603]
  35. E.H. Sohn, T. Wolden-Hanson, A.M. Matsumoto, Testosterone (T.)-induced changes in arcuate nucleus cocaine-amphetamine-regulated transcript and NPY mRNA are attenuated in old compared to young male brown Norway rats: contribution of T to age-related changes in cocaine-amphetamine-regulated transcript and NPY gene expression. Endocrinology 143(3), 954–963 (2002). https://doi.org/10.1210/endo.143.3.8670 [DOI: 10.1210/endo.143.3.8670]
  36. G. Rastrelli, T.W. O’Neill, T. Ahern, G. Bartfai, F.F. Casanueva, G. Forti, B. Keevil, A. Giwercman, T.S. Han, J. Slowikowska-Hilczer, M.E.J. Lean, N. Pendleton, M. Punab, L. Antonio, J. Tournoy, D. Vanderschueren, M. Maggi, I.T. Huhtaniemi, F.C.W. Wu, Symptomatic androgen deficiency develops only when both total and free testosterone decline in obese men who may have incident biochemical secondary hypogonadism: Prospective results from the EMAS. Clin. Endocrinol. (Oxf) 89(4), 459–469 (2018). https://doi.org/10.1111/cen.13756 . group, E.S [DOI: 10.1111/cen.13756]
  37. S. Bhasin, M. Pencina, G.K. Jasuja, T.G. Travison, A. Coviello, E. Orwoll, P.Y. Wang, C. Nielson, F. Wu, A. Tajar, F. Labrie, H. Vesper, A. Zhang, J. Ulloor, R. Singh, R. D’Agostino, R.S. Vasan,, Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J. Clin. Endocrinol. Metab. 96(8), 2430–2439 (2011). https://doi.org/10.1210/jc.2010-3012 [DOI: 10.1210/jc.2010-3012]
  38. F.C. Wu, A. Tajar, J.M. Beynon, S.R. Pye, A.J. Silman, J.D. Finn, T.W. O’Neill, G. Bartfai, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, M.E. Lean, N. Pendleton, M. Punab, S. Boonen, D. Vanderschueren, F. Labrie, I.T. Huhtaniemi, E. Group, Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 363(2), 123–135 (2010). https://doi.org/10.1056/NEJMoa0911101 [DOI: 10.1056/NEJMoa0911101]

MeSH Term

Abdominal Fat
Adipose Tissue, White
Child, Preschool
Gene Expression
Humans
Infant
Male
Obesity
Testosterone

Chemicals

Testosterone

Word Cloud

Created with Highcharts 10.0.0testosteronemen24receptorsubcutaneousadiposetissueWATgeneexpressionobese8exploratoryweightwhiteloweredserum5receiving[95%CI-6-4placebogenesAngiopoietin-likeSemaphorin3 GNeuropilinAngiopoietinanalysisneuropeptideydietingassociatedupregulationsecretedfactorPURPOSE:aimstudydetermineearlyloss-associatedchangesabdominalRNAnext-generationsequencingMETHODS:FourteenmeanageIQR516years434-54BMI383 kg/m346-40total4 nmol/L75-9providedsamplesbaselineweekslowenergydietRESULTS:Bodylosssimilarparticipantsn = 6-527 kg1726]n = 857 kg10-355]p = 086placebo-treated14410expressedfourupregulatedadjustedfalsediscoveryrateP < 005comparingmost-upregulatedgroupp < 00005CONCLUSIONS:WAT-expressedproteinregulateslipidmetabolismproposedadipocytedifferentiationadipokinewellvascularintegrityinvolvedappetiteregulationstudiesneededconfirmobservationspotentialbiologicalimplicationsTRIALREGISTRATION:clinicaltrialsgovIdentifierNCT01616732Registrationdate:June2012ChangesrandomizedcontroltrialalonecombinationtreatmentGeneObesityTestosteroneWhite

Similar Articles

Cited By

No available data.