Multivalent Ion-Mediated Attraction between Like-Charged Colloidal Particles: Nonmonotonic Dependence on the Particle Charge.

Cheng Lin, Xiaowei Qiang, Hai-Long Dong, Jie Huo, Zhi-Jie Tan
Author Information
  1. Cheng Lin: Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
  2. Xiaowei Qiang: Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
  3. Hai-Long Dong: Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
  4. Jie Huo: Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
  5. Zhi-Jie Tan: Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Abstract

Ion-mediated effective interactions are important for the structure and stability of charged particles such as colloids and nucleic acids. It has been known that the intrinsic electrostatic repulsion between like-charged particles can be modulated into effective attraction by multivalent ions. In this work, we examined the dependence of multivalent ion-mediated attraction between like-charged colloidal particles on the particle charge in a wide range by extensive Monte Carlo simulations. Our calculations show that for both divalent and trivalent salts, the effective attraction between like-charged colloidal particles becomes stronger with the increase of the particle charge, whereas it gradually becomes weakened when the particle charge exceeds a "critical" value. Correspondingly, as the particle charge is increased, the driving force for such effective attraction transits from an attractive electrostatic force to an attractive depletion force, and the attraction weakening by high particle charges is attributed to the transition of electrostatic force from attraction to repulsion. Our analyses suggest that the attractive depletion force and the repulsive electrostatic force at high particle charges result from the Coulomb depletion which suppresses the counterion condensation in the limited region between two like-charged colloidal particles. Moreover, our extensive calculations indicate that the "critical" particle charge decreases apparently for larger ions and smaller colloidal particles due to stronger Coulomb depletion and decreases slightly at higher salt concentrations due to the slightly enhanced Coulomb depletion in the intervening space between colloidal particles. Encouragingly, we derived an analytical formula for the "critical" particle charge based on the Lindemann melting law.

References

  1. Phys Rev Lett. 2000 May 22;84(21):4862-5 [PMID: 10990817]
  2. Biophys J. 2018 Apr 24;114(8):1776-1790 [PMID: 29694858]
  3. Langmuir. 2016 Feb 16;32(6):1450-9 [PMID: 26795459]
  4. J Phys Chem B. 2011 Aug 18;115(32):9864-72 [PMID: 21751805]
  5. Annu Rev Biophys. 2011;40:225-42 [PMID: 21332357]
  6. Phys Rev Lett. 2006 Jul 28;97(4):048101 [PMID: 16907613]
  7. J Phys Condens Matter. 2019 Sep 4;31(35):355101 [PMID: 31125981]
  8. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5542-56 [PMID: 11089112]
  9. Biophys J. 2020 Jun 16;118(12):3019-3025 [PMID: 32470322]
  10. Phys Chem Chem Phys. 2018 Apr 4;20(14):9436-9448 [PMID: 29565435]
  11. Phys Rev Lett. 2013 Jul 26;111(4):048301 [PMID: 23931412]
  12. Phys Rev Lett. 2000 Aug 14;85(7):1568-71 [PMID: 10970556]
  13. Chem Sci. 2015 Mar 1;6(3):1630-1639 [PMID: 28694943]
  14. J Chem Phys. 2016 Feb 14;144(6):065102 [PMID: 26874503]
  15. Phys Chem Chem Phys. 2011 Jul 21;13(27):12603-13 [PMID: 21670822]
  16. Annu Rev Phys Chem. 2010;61:171-89 [PMID: 20055668]
  17. Phys Rev Lett. 2016 Aug 19;117(8):088001 [PMID: 27588884]
  18. Phys Rev Lett. 2004 Oct 22;93(17):170802 [PMID: 15525062]
  19. J Chem Phys. 2019 Sep 21;151(11):114902 [PMID: 31542010]
  20. Sci Rep. 2020 Dec 9;10(1):21586 [PMID: 33299024]
  21. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11838-11843 [PMID: 29078386]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011502 [PMID: 21867173]
  23. Langmuir. 2014 Jan 28;30(3):733-41 [PMID: 24400954]
  24. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt B):5273-80 [PMID: 11089089]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):041501 [PMID: 12443206]
  26. Langmuir. 2019 Sep 3;35(35):11550-11565 [PMID: 31310557]
  27. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21482-6 [PMID: 21098260]
  28. J Chem Phys. 2020 Jan 14;152(2):024121 [PMID: 31941309]
  29. Nucleic Acids Res. 2015 Jul 13;43(12):6156-65 [PMID: 26019178]
  30. Phys Rev Lett. 2008 Nov 14;101(20):208305 [PMID: 19113388]
  31. Rep Prog Phys. 2018 Dec;81(12):126601 [PMID: 29978830]
  32. Biophys J. 2017 Jan 10;112(1):22-30 [PMID: 28076812]
  33. J Phys Chem B. 2016 Jul 7;120(26):5927-37 [PMID: 27057763]
  34. Biophys J. 2012 Aug 22;103(4):827-36 [PMID: 22947944]
  35. Annu Rev Biophys. 2017 May 22;46:227-246 [PMID: 28301768]
  36. J Chem Phys. 2013 Oct 21;139(15):150901 [PMID: 24160489]
  37. Biophys J. 2017 Aug 8;113(3):517-528 [PMID: 28793207]
  38. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061501 [PMID: 16485949]
  39. Biophys J. 2006 Jul 15;91(2):518-36 [PMID: 16648172]
  40. Proc Natl Acad Sci U S A. 1952 Oct;38(10):863-71 [PMID: 16589190]
  41. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041406 [PMID: 17500893]
  42. Langmuir. 2011 Apr 19;27(8):4439-46 [PMID: 21410204]
  43. Nucleic Acids Res. 2020 Jul 27;48(13):7018-7026 [PMID: 32542319]
  44. Phys Rev Lett. 2008 Oct 31;101(18):188101 [PMID: 18999867]
  45. J Chem Phys. 2012 Jul 21;137(3):034708 [PMID: 22830725]
  46. Phys Chem Chem Phys. 2017 Apr 12;19(15):10069-10080 [PMID: 28367551]
  47. Phys Chem Chem Phys. 2016 Feb 17;18(8):5883-95 [PMID: 26841284]
  48. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021402 [PMID: 11308487]
  49. Phys Rev Lett. 2006 Aug 11;97(6):068302 [PMID: 17026212]
  50. J Chem Phys. 2005 Jan 22;122(4):44903 [PMID: 15740294]
  51. J Chem Phys. 2010 Mar 28;132(12):124701 [PMID: 20370139]
  52. J Colloid Interface Sci. 2002 Aug 15;252(2):326-30 [PMID: 16290796]
  53. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15169-72 [PMID: 9860940]
  54. Sci Rep. 2017 Oct 26;7(1):14145 [PMID: 29074886]
  55. Sci Rep. 2016 Mar 21;6:23434 [PMID: 26997415]
  56. Phys Rev Lett. 2016 Jul 8;117(2):028101 [PMID: 27447528]
  57. Phys Rev Lett. 2008 Mar 21;100(11):118301 [PMID: 18517834]
  58. Phys Rev Lett. 2007 Jul 20;99(3):038104 [PMID: 17678334]
  59. J Chem Phys. 2012 Nov 7;137(17):174704 [PMID: 23145739]
  60. J Phys Chem B. 2019 Nov 21;123(46):9971-9983 [PMID: 31657573]
  61. J Chem Phys. 2004 Dec 22;121(24):12666-70 [PMID: 15606292]
  62. Annu Rev Biochem. 2014;83:813-41 [PMID: 24606136]
  63. Phys Rev E. 2016 Feb;93(2):022602 [PMID: 26986372]
  64. Phys Rev Lett. 2003 Jul 11;91(2):028301 [PMID: 12906514]
  65. J Chem Phys. 2017 Sep 28;147(12):124901 [PMID: 28964034]
  66. J Comput Chem. 2011 Mar;32(4):756-70 [PMID: 20845420]
  67. Phys Rev Lett. 2000 Jul 24;85(4):872-5 [PMID: 10991420]
  68. J Chem Phys. 2010 Nov 28;133(20):204901 [PMID: 21133451]
  69. Annu Rev Biophys. 2008;37:197-214 [PMID: 18573079]

Word Cloud

Created with Highcharts 10.0.0particleparticlesattractionchargeforcecolloidaldepletioneffectiveelectrostaticlike-charged"critical"attractiveCoulombrepulsionmultivalentionsextensivecalculationsbecomesstrongerhighchargesdecreasesdueslightlyIon-mediatedinteractionsimportantstructurestabilitychargedcolloidsnucleicacidsknownintrinsiccanmodulatedworkexamineddependenceion-mediatedwiderangeMonteCarlosimulationsshowdivalenttrivalentsaltsincreasewhereasgraduallyweakenedexceedsvalueCorrespondinglyincreaseddrivingtransitsweakeningattributedtransitionanalysessuggestrepulsiveresultsuppressescounterioncondensationlimitedregiontwoMoreoverindicateapparentlylargersmallerhighersaltconcentrationsenhancedinterveningspaceEncouraginglyderivedanalyticalformulabasedLindemannmeltinglawMultivalentIon-MediatedAttractionLike-ChargedColloidalParticles:NonmonotonicDependenceParticleCharge

Similar Articles

Cited By