Tracking Single Molecule Dynamics in the Adult Brain.

Adam D Hines, Bruno van Swinderen
Author Information
  1. Adam D Hines: Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Queensland, Australia. ORCID
  2. Bruno van Swinderen: Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Queensland, Australia b.vanswinderen@uq.edu.au. ORCID

Abstract

Super-resolution microscopy provides valuable insight for understanding the nanoscale organization within living tissue, although this method is typically restricted to cultured or dissociated cells. Here, we develop a method to track the mobility of individual proteins in adult brains, focusing on a key component of the presynaptic release machinery, syntaxin1A (Sx1a). We show that individual Sx1a dynamics can be reliably tracked within neurons in the whole fly brain, and that the mobility of Sx1a molecules increases following conditional neural stimulation. We then apply this preparation to the problem of general anesthesia, to address how different anesthetics might affect single molecule dynamics in intact brain synapses. We find that propofol, etomidate, and isoflurane significantly impair Sx1a mobility, while ketamine and sevoflurane have little effect. Resolving single molecule dynamics in intact fly brains provides a novel approach to link localized molecular effects with systems-level phenomena such as general anesthesia.

Keywords

References

  1. Cell. 2018 Feb 22;172(5):1108-1121.e15 [PMID: 29474910]
  2. Nat Methods. 2008 Feb;5(2):159-61 [PMID: 18176568]
  3. J Vis Exp. 2018 Jan 14;(131): [PMID: 29364242]
  4. Mol Biol Cell. 1998 Jun;9(6):1235-52 [PMID: 9614171]
  5. Biophys Chem. 2005 Apr 1;114(1):53-61 [PMID: 15792861]
  6. Nat Methods. 2012 May 13;9(7):727-9 [PMID: 22581370]
  7. Nat Protoc. 2017 Dec;12(12):2590-2622 [PMID: 29189775]
  8. Microsc Res Tech. 1999 Apr 15;45(2):65-79 [PMID: 10332725]
  9. C R Acad Hebd Seances Acad Sci D. 1970 Dec 21;271(25):2346-9 [PMID: 4995202]
  10. J Physiol. 2004 Jul 15;558(Pt 2):489-502 [PMID: 15169847]
  11. Methods. 2017 Feb 15;115:80-90 [PMID: 27713081]
  12. J Neurosci. 2001 Dec 1;21(23):9142-50 [PMID: 11717347]
  13. Cell Rep. 2012 Oct 25;2(4):991-1001 [PMID: 23063364]
  14. Elife. 2018 Dec 27;7: [PMID: 30589412]
  15. J Neurosci. 2006 May 24;26(21):5767-76 [PMID: 16723534]
  16. Mol Pharmacol. 2005 May;67(5):1591-9 [PMID: 15728262]
  17. Biophys Chem. 2007 Aug;129(1):82-91 [PMID: 17574724]
  18. eNeuro. 2020 Feb 28;7(1): [PMID: 32019872]
  19. Rep Prog Phys. 2015 Dec;78(12):124601 [PMID: 26511974]
  20. Science. 1992 Jul 10;257(5067):255-9 [PMID: 1321498]
  21. J Neurosci. 2016 Jul 27;36(30):7911-24 [PMID: 27466336]
  22. J Physiol. 2011 Mar 1;589(Pt 5):1103-15 [PMID: 21173083]
  23. Science. 2014 Oct 24;346(6208):1257998 [PMID: 25342811]
  24. Neuron. 2012 Jul 12;75(1):11-25 [PMID: 22794257]
  25. Nat Methods. 2009 Feb;6(2):131-3 [PMID: 19169260]
  26. Trends Pharmacol Sci. 2019 Jul;40(7):464-481 [PMID: 31147199]
  27. Nat Protoc. 2006;1(4):2110-5 [PMID: 17487202]
  28. Cold Spring Harb Perspect Biol. 2011 Dec 01;3(12): [PMID: 22026965]
  29. Curr Biol. 2013 Apr 8;23(7):594-8 [PMID: 23499534]
  30. Front Synaptic Neurosci. 2011 Feb 01;3:2 [PMID: 21423410]
  31. Neuron. 2015 Feb 18;85(4):787-803 [PMID: 25661182]
  32. Nature. 2006 Apr 13;440(7086):935-9 [PMID: 16612384]
  33. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11959-64 [PMID: 26351670]
  34. J Cell Biol. 2016 Sep 26;214(7):847-58 [PMID: 27646276]
  35. Nature. 1994 Jul 21;370(6486):191-3 [PMID: 8028665]
  36. Cell Rep. 2018 Jan 9;22(2):427-440 [PMID: 29320738]
  37. Bioessays. 2014 Apr;36(4):372-81 [PMID: 24449137]
  38. J Neurosci. 2006 Jan 4;26(1):265-72 [PMID: 16399696]
  39. Nat Commun. 2018 Dec 6;9(1):5218 [PMID: 30523256]
  40. Traffic. 2001 Nov;2(11):764-74 [PMID: 11733042]
  41. Nat Commun. 2017 Jan 03;8:13660 [PMID: 28045048]
  42. Cell. 1995 Jan 27;80(2):311-20 [PMID: 7834751]
  43. Nat Methods. 2008 Feb;5(2):155-7 [PMID: 18193054]
  44. Neuron. 2017 Sep 13;95(6):1350-1364.e12 [PMID: 28867551]
  45. J Neurogenet. 2004 Apr-Jun;18(2):377-402 [PMID: 15763995]
  46. Curr Biol. 2019 Nov 4;29(21):3611-3621.e3 [PMID: 31630955]
  47. Sci Rep. 2018 Feb 5;8(1):2348 [PMID: 29402974]
  48. Anesthesiology. 2015 May;122(5):1060-74 [PMID: 25738637]
  49. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24627-24628 [PMID: 32994345]
  50. Anesthesiology. 2019 Sep;131(3):555-568 [PMID: 31356232]
  51. Curr Biol. 2007 Apr 3;17(7):624-9 [PMID: 17350263]
  52. PLoS Comput Biol. 2015 Sep 14;11(9):e1004407 [PMID: 26367029]
  53. Science. 2006 Sep 15;313(5793):1642-5 [PMID: 16902090]
  54. Anesthesiology. 2006 Jun;104(6):1170-5 [PMID: 16732087]
  55. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2479-84 [PMID: 10051668]
  56. Neurosci Lett. 2017 Mar 22;644:5-9 [PMID: 28235601]
  57. Nat Methods. 2008 Aug;5(8):695-702 [PMID: 18641657]
  58. Front Neuroanat. 2018 Sep 13;12:72 [PMID: 30271328]

MeSH Term

Anesthetics, Inhalation
Animals
Brain
Drosophila
Drosophila melanogaster
Isoflurane
Synapses

Chemicals

Anesthetics, Inhalation
Isoflurane

Word Cloud

Created with Highcharts 10.0.0Sx1amobilitydynamicsbraingeneralanesthesiamicroscopyprovideswithinmethodindividualbrainsflysinglemoleculeintactpropofolSuper-resolutionvaluableinsightunderstandingnanoscaleorganizationlivingtissuealthoughtypicallyrestrictedcultureddissociatedcellsdeveloptrackproteinsadultfocusingkeycomponentpresynapticreleasemachinerysyntaxin1AshowcanreliablytrackedneuronswholemoleculesincreasesfollowingconditionalneuralstimulationapplypreparationproblemaddressdifferentanestheticsmightaffectsynapsesfindetomidateisofluranesignificantlyimpairketaminesevofluranelittleeffectResolvingnovelapproachlinklocalizedmoleculareffectssystems-levelphenomenaTrackingSingleMoleculeDynamicsAdultBrainDrosophilamelanogasterexvivosuper-resolution

Similar Articles

Cited By