Rebound and scattering of motile algae in confined chambers.

Albane Théry, Yuxuan Wang, Mariia Dvoriashyna, Christophe Eloy, Florence Elias, Eric Lauga
Author Information
  1. Albane Théry: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk. ORCID
  2. Yuxuan Wang: Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France.
  3. Mariia Dvoriashyna: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk. ORCID
  4. Christophe Eloy: Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France. ORCID
  5. Florence Elias: Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France. ORCID
  6. Eric Lauga: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. at830@cam.ac.uk e.lauga@damtp.cam.ac.uk. ORCID

Abstract

Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.

References

  1. J R Soc Interface. 2014 Feb 26;11(94):20131160 [PMID: 24573332]
  2. Nature. 1963 Oct 26;200:381 [PMID: 14087906]
  3. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:363-406 [PMID: 11337403]
  4. Soft Matter. 2019 Jan 21;15(3):452-461 [PMID: 30574653]
  5. Soft Matter. 2015 May 7;11(17):3396-411 [PMID: 25800455]
  6. Phys Rev Lett. 2010 Oct 15;105(16):168102 [PMID: 21231018]
  7. PLoS Pathog. 2012;8(11):e1003023 [PMID: 23166495]
  8. Sci Rep. 2016 May 23;6:26669 [PMID: 27211846]
  9. Eur Phys J E Soft Matter. 2013 Jan;36(1):4 [PMID: 23321716]
  10. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92 [PMID: 23297240]
  11. Eur Phys J E Soft Matter. 2016 Dec;39(12):122 [PMID: 27966073]
  12. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8007-10 [PMID: 22566658]
  13. Annu Rev Fluid Mech. 2015 Jan 1;47:343-375 [PMID: 26594068]
  14. Phys Rev Lett. 2015 Jul 17;115(3):038101 [PMID: 26230827]
  15. Rep Prog Phys. 2015 May;78(5):056601 [PMID: 25919479]
  16. Water Res. 2011 Oct 1;45(15):4355-66 [PMID: 21757217]
  17. Soft Matter. 2014 Mar 21;10(11):1784-9 [PMID: 24800268]
  18. Nature. 1973 Oct 19;245(5425):380-2 [PMID: 4593496]
  19. Nature. 1974 May 3;249(452):73-4 [PMID: 4598030]
  20. Phys Rev Lett. 2018 Feb 9;120(6):068002 [PMID: 29481277]
  21. Science. 2006 Aug 18;313(5789):944-8 [PMID: 16917055]
  22. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1001-6 [PMID: 21199951]
  23. Res Microbiol. 2001 Oct;152(8):707-16 [PMID: 11686384]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):063016 [PMID: 26764813]
  25. Phys Rev Lett. 2019 Dec 13;123(24):248102 [PMID: 31922880]
  26. Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91 [PMID: 16590601]
  27. J R Soc Interface. 2020 Jan;17(162):20190580 [PMID: 31937233]
  28. Biol Rev Camb Philos Soc. 1974 Feb;49(1):85-125 [PMID: 4206625]
  29. Phys Rev E. 2019 Jan;99(1-1):012610 [PMID: 30780271]
  30. Phys Rev Lett. 2008 Jul 18;101(3):038102 [PMID: 18764299]
  31. Phys Rev Lett. 2015 Dec 18;115(25):258102 [PMID: 26722946]
  32. J R Soc Interface. 2020 Jul;17(168):20200077 [PMID: 32634367]
  33. Science. 2009 Jul 24;325(5939):487-90 [PMID: 19628868]
  34. Mol Microbiol. 1997 Jun;24(6):1109-17 [PMID: 9218761]
  35. Phys Rev Lett. 2010 Oct 15;105(16):168101 [PMID: 21231017]
  36. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10940-5 [PMID: 21690349]
  37. Cell Motil Cytoskeleton. 1994;29(2):141-54 [PMID: 7820864]

MeSH Term

Cell Movement
Chlamydomonas
Chlamydomonas reinhardtii
Hydrodynamics
Microfluidics

Word Cloud

Created with Highcharts 10.0.0scatteringexperimentstrajectoriesconfinedmodelcornergeometricalmotilealgaetrappedcellsmicrofluidicdistributionaccumulationobservedchambersMotivatedrecentdemonstratinggetdrainingfoamsstudymicroorganismsfoamchannelssectionPlateaubordertracksingleChlamydomonasreinhardtiithinthree-circlechambershowspatialexhibitsstrongUsingempiricallawspreviousconstantanglenextdeveloptwo-dimensioncomputephasespaceperiodicswimmersinsidethree-circlesbilliardfindmajoritycellendprovidingmechanismIncorporatinganglesincludinghydrodynamicinteractionssurfacesenablesusreproduceexperimentalprobabilitydensityfunctionmicro-swimmersmodelsdemonstratethereforemotilityleadsgenericallytrappingcomplexgeometriesRebound

Similar Articles

Cited By