Polystyrene microplastics induce blood-testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats.

Shengda Li, Qimeng Wang, Hui Yu, Long Yang, Yiqing Sun, Ning Xu, Nana Wang, Zhimin Lei, Junyu Hou, Yinchuan Jin, Hongqin Zhang, Lianqin Li, Feibo Xu, Lianshuang Zhang
Author Information
  1. Shengda Li: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  2. Qimeng Wang: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  3. Hui Yu: College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China.
  4. Long Yang: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  5. Yiqing Sun: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  6. Ning Xu: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  7. Nana Wang: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  8. Zhimin Lei: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  9. Junyu Hou: College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China.
  10. Yinchuan Jin: Department of Medical Psychology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, People's Republic of China. jin_yc@fmmu.edu.cn.
  11. Hongqin Zhang: College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China.
  12. Lianqin Li: Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
  13. Feibo Xu: College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China.
  14. Lianshuang Zhang: College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China. zls197600@126.com. ORCID

Abstract

As a persistent pollutant, microplastics (MPs) have been reported to induce sperm quantity decrease in mice. However, the related mechanism remains obscure. Therefore, this study is intended to explore the effects of polystyrene microplastics (PS-MPs) on male reproduction and its related mechanism of blood-testis barrier (BTB) impairment. Thirty-two adult male Wistar rats were divided randomly into four groups fed with PS-MPs for 90 days at doses of 0 mg/day (control group), 0.015 mg/day, 0.15 mg/day, and 1.5 mg/day, respectively. The present results have shown that PS-MP exposure led to the damage of seminiferous tubule, resulted in apoptosis of spermatogenic cells, and decreased the motility and concentration of sperm, while the abnormality of sperm was elevated. Meanwhile, PS-MPs could induce oxidative stress and activate the p38 MAPK pathway and thus deplete the nuclear factor erythroid-2 related factor 2 (Nrf2). Noteworthily, PS-MPs led to the BTB-related protein expression decrease. All these results demonstrated that PS-MP exposure may lead to the destruction of BTB integrity and the apoptosis of spermatogenic cells through the activation of the MAPK-Nrf2 pathway. The current study provided novelty evidence for elucidating the effects of PS-MPs on male reproductive toxicity and its potential mechanism.

Keywords

References

  1. Almog T, Lazar S, Reiss N, Etkovitz N, Milch E, Rahamim N, Dobkin-Bekman M, Rotem R, Kalina M, Ramon J (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489. https://doi.org/10.1074/jbc.M710492200 [DOI: 10.1074/jbc.M710492200]
  2. Alves MG, Rato L, Carvalho RA, Moreira PI, Oliveira PF (2013) Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 70(5):777–793. https://doi.org/10.1007/s00018-012-1079-1 [DOI: 10.1007/s00018-012-1079-1]
  3. Arthur C, Baker J, Bamford H (2008) International research workshop on the occurrence, effects, and fate of microplastic marine debris. Conference Proceedings pp.9-11.
  4. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. https://doi.org/10.1016/j.envpol.2014.12.021 [DOI: 10.1016/j.envpol.2014.12.021]
  5. Bisht S, Faiq M, Tolahunase M, Dada R (2017) Oxidative stress and male infertility. Nat Rev Urol 14:470. https://doi.org/10.1007/978-981-10-4017-7_10 [DOI: 10.1007/978-981-10-4017-7_10]
  6. Boucher J, Friot D (2017) Primary microplastics in the oceans: a global evaluation of sources: IUCN Gland, Switzerland. https://doi.org/10.2305/iucn.ch.2017.01.en
  7. Brouard V, Guénon I, Bouraima-Lelong H, Delalande C (2016) Differential effects of bisphenol A and estradiol on rat spermatogenesis’ establishment. Reprod Toxicol 63:49–61. https://doi.org/10.1016/j.reprotox.2016.05.003 [DOI: 10.1016/j.reprotox.2016.05.003]
  8. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199. https://doi.org/10.1006/taap.2001.9240 [DOI: 10.1006/taap.2001.9240]
  9. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. https://doi.org/10.1021/es800249a [DOI: 10.1021/es800249a]
  10. Cadenas E, Davies K (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3):222–230. https://doi.org/10.1016/S0891-5849(00)00317-8 [DOI: 10.1016/S0891-5849(00)00317-8]
  11. Chang X, Xue Y, Li J, Zou L, Tang M (2020) Potential health impact of environmental micro-and nanoplastics pollution. J Appl Toxicol 40:4–15. https://doi.org/10.1002/jat.3915 [DOI: 10.1002/jat.3915]
  12. Chen Z, Wang C, Yu N, Si L, Zhu L, Zeng A, Liu Z, Wang X (2019) Inf2 regulates oxidative stress-induced apoptosis in epidermal hacat cells by modulating the hif1 signaling pathway. Biomed Pharmacother 111:151–161. https://doi.org/10.1016/j.biopha.2018.12.046 [DOI: 10.1016/j.biopha.2018.12.046]
  13. Chihara M, Otsuka S, Ichii O, Kon Y (2013) Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood–testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Develop 59:525–535. https://doi.org/10.1262/jrd.2013-058 [DOI: 10.1262/jrd.2013-058]
  14. Dekiff JH, Remy D, Klasmeier J, Fries E (2014) Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut 186:248–256. https://doi.org/10.1016/j.envpol.2013.11.019 [DOI: 10.1016/j.envpol.2013.11.019]
  15. Duan P, Hu C, Quan C, Yu T, Zhou W, Yuan M, Shi Y, Yang K (2016) 4-Nonylphenol induces apoptosis, autophagy and necrosis in Sertoli cells: involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways. Toxicology 341:28–40. https://doi.org/10.1016/j.tox.2016.01.004 [DOI: 10.1016/j.tox.2016.01.004]
  16. Gerber J, Heinrich J, Brehm R (2016) Blood–testis barrier and Sertoli cellfunction: lessons from SCCx43KO mice. Reproduction 151(2):R15–R27. https://doi.org/10.1530/rep-15-0366 [DOI: 10.1530/rep-15-0366]
  17. Hamed M, Soliman HA, Osman AG, Sayed AE-DH (2020) Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environ Sci Pollut R 27:1–8. https://doi.org/10.1007/s11356-020-07898-y [DOI: 10.1007/s11356-020-07898-y]
  18. Hasegawa K, Saga Y (2012) Retinoic acid signaling in Sertoli cells regulates organization of the blood–testis barrier through cyclical changes in gene expression. Development 139:4347–4355. https://doi.org/10.1242/dev.080119 [DOI: 10.1242/dev.080119]
  19. Huang C, Li B, Xu K, Liu D, Hu J, Yang Y, Nie H, Fan L, Zhu W (2017) Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil Steril 107:83–88.e2. https://doi.org/10.1016/j.fertnstert.2016.09.035 [DOI: 10.1016/j.fertnstert.2016.09.035]
  20. Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142. https://doi.org/10.1016/S0169-409X(01)00152-1 [DOI: 10.1016/S0169-409X(01)00152-1]
  21. Inhorn MC, Patrizio P (2015) Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update 21:411–426. https://doi.org/10.1093/humupd/dmv016 [DOI: 10.1093/humupd/dmv016]
  22. Jiang YP, Yang JM, Ye RJ, Liu N, Zhang WJ, Ma L, Zheng P, Niu JG, Liu P, Yu JQ (2019) Protective effects of betaine on diabetic induced disruption of the male mice blood–testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Biomed Pharmacother 120:109474. https://doi.org/10.1016/j.biopha.2019.109474 [DOI: 10.1016/j.biopha.2019.109474]
  23. Jin H, Ma T, Sha X, Liu Z, Ding J (2021) Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater 401:123430. https://doi.org/10.1016/j.jhazmat.2020.123430 [DOI: 10.1016/j.jhazmat.2020.123430]
  24. Lan Z, Yang WX (2012) Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine (London, England) 7(4):579–596. https://doi.org/10.2217/nnm.12.20 [DOI: 10.2217/nnm.12.20]
  25. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145. https://doi.org/10.1126/science.1254065 [DOI: 10.1126/science.1254065]
  26. Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D (2018) Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619-620:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103 [DOI: 10.1016/j.scitotenv.2017.11.103]
  27. Lenz R, Enders K, Nielsen TG (2016) Microplastic exposure studies should be environmentally realistic. P Natl Acad Sci USA 113:E4121–E4122. https://doi.org/10.1073/pnas.1606615113 [DOI: 10.1073/pnas.1606615113]
  28. Li MW, Mruk DD, Lee WM, Cheng CY (2009) Connexin 43 andplakophilin-2 as a protein complex that regulates blood–testis barrier dynamics. Proc Natl Acad Sci U S A 106(25):10213–10218. https://doi.org/10.1073/pnas.0901700106 [DOI: 10.1073/pnas.0901700106]
  29. Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. https://doi.org/10.1016/j.envpol.2015.09.018 [DOI: 10.1016/j.envpol.2015.09.018]
  30. Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam 30:2136–2140. https://doi.org/10.1080/19440049.2013.843025 [DOI: 10.1080/19440049.2013.843025]
  31. Liu J, Ren L, Wei J, Zhang J, Zhu Y, Li X, Jing L, Duan J, Zhou X, Sun Z (2018) Fine particle matter disrupts the blood–testis barrier by activating TGF-β3/p38 MAPK pathway and decreasing testosterone secretion in rat. Environ Toxicol 33:711–719. https://doi.org/10.1002/tox.22556 [DOI: 10.1002/tox.22556]
  32. Liu B, Wu S, Shen L, Zhao T, Wei Y, Tang X, Long C, Zhou Y, He D, Lin T (2019) Spermatogenesis dysfunction induced by PM from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotox Environ Safe 167:161–168. https://doi.org/10.1016/j.ecoenv.2018.09.118 [DOI: 10.1016/j.ecoenv.2018.09.118]
  33. Liu B, Shen L, Zhao T, Sun M, Wang J, Long C, He D, Lin T, Wei G (2020) Automobile exhaust-derived PM induces blood–testis barrier damage through ROS-MAPK-Nrf2 pathway in Sertoli cells of rats. Ecotox Environ Safe 189:110053. https://doi.org/10.1016/j.ecoenv.2019.110053 [DOI: 10.1016/j.ecoenv.2019.110053]
  34. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183 [DOI: 10.1021/acs.est.6b00183]
  35. Lusher AL, Tirelli V, O’Connor I, Officer R (2015) Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep-UK 5:14947. https://doi.org/10.1038/srep14947 [DOI: 10.1038/srep14947]
  36. Martins A, Guilhermino L (2018) Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus. Sci Total Environ 631-632:421–428. https://doi.org/10.1016/j.scitotenv.2018.03.054 [DOI: 10.1016/j.scitotenv.2018.03.054]
  37. Miura S, Yamaguchi M, Yoshino H, Nakai Y, Kashiwakura I (2019) Dose-dependent increase of Nrf2 target gene expression in mice exposed to ionizing radiation. Radiat Res 191(2):176–188. https://doi.org/10.1667/RR15203.1 [DOI: 10.1667/RR15203.1]
  38. Morales A, Mohamed F, Cavicchia JC (2007) Apoptosis and blood–testis barrier during the first spermatogenic wave in the pubertal rat. Anat Rec 290:206–214. https://doi.org/10.1002/ar.20417 [DOI: 10.1002/ar.20417]
  39. Mruk DD, Cheng C (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806. https://doi.org/10.1210/er.2003-0022 [DOI: 10.1210/er.2003-0022]
  40. Mruk DD, Cheng C (2010) Tight junctions in the testis: new perspectives. Philos T R Soc B 365:1621–1635. https://doi.org/10.1098/rstb.2010.0010 [DOI: 10.1098/rstb.2010.0010]
  41. Rima D (2017) Oxidative stress major executioner in disease pathology role in sperm DNA damage and preventive strategies. Front Biosci-Landmrk 9(3):420–447. https://doi.org/10.2741/s495 [DOI: 10.2741/s495]
  42. Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237. https://doi.org/10.1016/j.marpolbul.2007.03.022 [DOI: 10.1016/j.marpolbul.2007.03.022]
  43. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661 [DOI: 10.1016/j.scitotenv.2014.06.051]
  44. Santos RG, Andrades R, Boldrini MA, Martins AS (2015) Debris ingestion by juvenile marine turtles: an underestimated problem. Mar Pollut Bull 93:37–43. https://doi.org/10.1016/j.marpolbul.2015.02.022 [DOI: 10.1016/j.marpolbul.2015.02.022]
  45. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418. https://doi.org/10.1023/a:1009616228304 [DOI: 10.1023/a]
  46. Song C, Heping H, Shen Y, Jin S, Li ZA, Ren X, Wang K, Zhang L, Wang J, Shi D (2020) AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere 244:125495. https://doi.org/10.1016/j.chemosphere.2019.125495 [DOI: 10.1016/j.chemosphere.2019.125495]
  47. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet ME, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. P Natl Acad Sci USA 113:2430–2435 [DOI: 10.1073/pnas.1519019113]
  48. Tao S, Wang L, Zhu Z, Liu Y, Wu L, Yuan C, Zhang G, Wang Z (2019) Adverse effects of bisphenol A on Sertoli cell blood–testis barrier in rare minnow Gobiocypris rarus. Ecotoxi Environ Safe 171:475–483. https://doi.org/10.1016/j.ecoenv.2019.01.007 [DOI: 10.1016/j.ecoenv.2019.01.007]
  49. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010 [DOI: 10.1016/j.envpol.2014.06.010]
  50. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:1–9. https://doi.org/10.1186/s12302-014-0012-7 [DOI: 10.1186/s12302-014-0012-7]
  51. Wang J, Li Y, Lu L, Zheng M, Zhang X, Tian H, Wang W, Ru S (2019) Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ Pollut 254:113024. https://doi.org/10.1016/j.envpol.2019.113024 [DOI: 10.1016/j.envpol.2019.113024]
  52. Xia W, Wong EW, Mruk DD, Cheng CY (2009) TGF-beta3 and TNFalpha perturb blood–testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 327(1):48–61. https://doi.org/10.1016/j.ydbio.2008.11.028 [DOI: 10.1016/j.ydbio.2008.11.028]
  53. Xie X, Deng T, Duan J, Xie J, Yuan J, Chen M (2020) Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotox Environ Safe 190:110133. https://doi.org/10.1016/j.ecoenv.2019.110133 [DOI: 10.1016/j.ecoenv.2019.110133]
  54. Zhang X, Choi Y, Han JW, Kim E, Park JH, Gurunathan S, Kim JH (2015) Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine 10:1335. https://doi.org/10.2147/IJN.S76062 [DOI: 10.2147/IJN.S76062]
  55. Zhao M, Zhu P, Fujino M, Nishio Y, Chen J, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhao L (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Bioph Res Co 479:663–669. https://doi.org/10.1016/j.bbrc.2016.09.156 [DOI: 10.1016/j.bbrc.2016.09.156]
  56. Zhu K, Jia H, Sun Y, Dai Y, Zhang C, Guo X, Wang T, Zhu L (2020) Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species. Water Res 173:115564. https://doi.org/10.1016/j.watres.2020.115564 [DOI: 10.1016/j.watres.2020.115564]

Grants

  1. No. 81701301/The National Natural Science Foundation of China
  2. 2020JM-328/Nature Science Foundation from Shanxi Province
  3. No. S201910440051, S202010440090/Science and Technology Innovation plan for college students in Shandong Province

MeSH Term

Animals
Blood-Testis Barrier
Male
Mice
Microplastics
NF-E2-Related Factor 2
Plastics
Polystyrenes
Rats
Rats, Wistar
Signal Transduction

Chemicals

Microplastics
NF-E2-Related Factor 2
Plastics
Polystyrenes

Word Cloud

Created with Highcharts 10.0.0PS-MPsmg/daypathwaymicroplasticsinducespermrelatedmechanismmalebarrier0decreasestudyeffectsblood-testisBTBratsresultsPS-MPexposureledapoptosisspermatogeniccellsstressp38MAPKfactorNrf2MAPK-Nrf2signalingpersistentpollutantMPsreportedquantitymiceHoweverremainsobscureThereforeintendedexplorepolystyrenereproductionimpairmentThirty-twoadultWistardividedrandomlyfourgroupsfed90daysdosescontrolgroup0151515respectivelypresentshowndamageseminiferoustubuleresulteddecreasedmotilityconcentrationabnormalityelevatedMeanwhileoxidativeactivatethusdepletenuclearerythroid-22NoteworthilyBTB-relatedproteinexpressiondemonstratedmayleaddestructionintegrityactivationcurrentprovidednoveltyevidenceelucidatingreproductivetoxicitypotentialPolystyrenedisruptionregulatedBlood–testisMicroplasticsOxidativeRats

Similar Articles

Cited By