HIV Drug Resistance and Transmission Networks Among a Justice-Involved Population at the Time of Community Reentry in Washington, D.C.

Curt G Beckwith, Sugi Min, Akarsh Manne, Vladimir Novitsky, Mark Howison, Tao Liu, Irene Kuo, Ann Kurth, Lauri Bazerman, Anya Agopian, Rami Kantor
Author Information
  1. Curt G Beckwith: Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island, USA.
  2. Sugi Min: The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA. ORCID
  3. Akarsh Manne: Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island, USA.
  4. Vladimir Novitsky: Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island, USA.
  5. Mark Howison: Research Improving People's Lives, Providence, Rhode Island, USA.
  6. Tao Liu: Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA.
  7. Irene Kuo: George Washington University Milken Institute School of Public Health, Washington, District of Columbia, USA.
  8. Ann Kurth: Yale University School of Nursing, Orange, Connecticut, USA.
  9. Lauri Bazerman: Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island, USA.
  10. Anya Agopian: George Washington University Milken Institute School of Public Health, Washington, District of Columbia, USA.
  11. Rami Kantor: Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island, USA.

Abstract

Justice-involved (JI) populations bear a disproportionate burden of HIV infection and are at risk of poor treatment outcomes. Drug resistance prevalence and emergence, and phylogenetic inference of transmission networks, understudied in vulnerable JI populations, can inform care and prevention interventions, particularly around the critical community reentry period. We analyzed banked blood specimens from CARE+ Corrections study participants in Washington, D.C. (DC) across three time points and conducted HIV Drug Resistance testing using next-generation sequencing (NGS) at 20% and 5% thresholds to identify prevalent and evolving resistance during community reentry. Phylogenetic analysis was used to identify molecular clusters within participants, and in an extended analysis between participants and publicly available DC sequences. HIV sequence data from 54 participants (99 specimens) were analyzed. The prevalence of transmitted drug resistance was 14% at both thresholds, and acquired drug resistance was 47% at 20%, and 57% at 5% NGS thresholds, respectively. The overall prevalence of drug resistance was 43% at 20%, and 52% at 5% NGS thresholds, respectively. Among 34 participants sampled longitudinally, 21%-35% accumulated 10-17 new resistance mutations during a mean 4.3 months. In phylogenetic analysis within the JI population, 11% were found in three molecular clusters. The extended phylogenetic analysis identified 46% of participants in 22 clusters, of which 21 also included publicly-available DC sequences, and one JI-only unique dyad. This is the first study to identify a high prevalence of HIV Drug Resistance and its accumulation in a JI population during community reentry and suggests phylogenetic integration of this population into the non-JI DC HIV community. These data support the need for new, effective, and timely interventions to improve HIV treatment during this vulnerable period, and for JI populations to be included in broader surveillance and prevention efforts.

Keywords

References

  1. BMC Public Health. 2009 May 27;9:156 [PMID: 19473508]
  2. JAMA Intern Med. 2018 Apr 1;178(4):542-553 [PMID: 29532059]
  3. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  4. HIV Med. 2017 Nov;18(10):756-763 [PMID: 28585361]
  5. PLoS One. 2018 Mar 30;13(3):e0191643 [PMID: 29601591]
  6. Sci Rep. 2020 Oct 29;10(1):18547 [PMID: 33122765]
  7. PLoS One. 2009;4(5):e5416 [PMID: 19412547]
  8. N Engl J Med. 2010 Mar 18;362(11):967-70 [PMID: 20147707]
  9. Nucleic Acids Res. 2003 Jan 1;31(1):298-303 [PMID: 12520007]
  10. Clin Infect Dis. 2017 Oct 1;65(7):1247-1248 [PMID: 28549121]
  11. AIDS Behav. 2011 Feb;15(2):356-64 [PMID: 21042930]
  12. PLoS One. 2017 Jan 12;12(1):e0169078 [PMID: 28081178]
  13. J Clin Microbiol. 2018 May 25;56(6): [PMID: 29618499]
  14. AIDS Behav. 2019 Apr;23(4):1016-1031 [PMID: 30627850]
  15. HIV Clin Trials. 2008 Sep-Oct;9(5):341-7 [PMID: 18977723]
  16. Viruses. 2015 Dec 07;7(12):6360-70 [PMID: 26690199]
  17. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71 [PMID: 22135472]
  18. Lancet HIV. 2018 Nov;5(11):e638-e646 [PMID: 30282603]
  19. AIDS Res Hum Retroviruses. 2013 Jan;29(1):136-41 [PMID: 22966822]
  20. Antivir Ther. 2012;17(2):377-86 [PMID: 22297391]
  21. HIV Clin Trials. 2011 Sep-Oct;12(5):244-54 [PMID: 22180522]
  22. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  23. JAMA. 2019 Mar 5;321(9):844-845 [PMID: 30730529]
  24. J Offender Rehabil. 2012 Jan;51(1-2):78-95 [PMID: 23087588]
  25. PLoS One. 2009;4(3):e4724 [PMID: 19266092]
  26. Am J Public Health. 2015 Jul;105(7):e5-16 [PMID: 25973818]
  27. Bioinformatics. 2019 Jun 1;35(12):2029-2035 [PMID: 30407489]
  28. AIDS Res Hum Retroviruses. 2012 Feb;28(2):171-5 [PMID: 21819219]
  29. Clin Infect Dis. 2002 Oct 1;35(7):883-6 [PMID: 12228827]
  30. J Antimicrob Chemother. 2020 Jan 1;75(1):170-182 [PMID: 31617907]
  31. Lancet HIV. 2016 May;3(5):e231-8 [PMID: 27126490]
  32. PLoS One. 2009 Nov 11;4(11):e7558 [PMID: 19907649]
  33. PLoS One. 2013 Jul 09;8(7):e69033 [PMID: 23874857]
  34. AIDS Res Hum Retroviruses. 2011 Dec;27(12):1349-53 [PMID: 21732793]
  35. Annu Rev Med. 2019 Jan 27;70:137-150 [PMID: 30355266]
  36. J Infect Dev Ctries. 2014 Aug 13;8(8):1063-7 [PMID: 25116676]
  37. BMC Res Notes. 2017 Sep 11;10(1):474 [PMID: 28893321]
  38. J Antimicrob Chemother. 2015 Jul;70(7):2090-6 [PMID: 25755001]
  39. Viruses. 2020 Jun 27;12(7): [PMID: 32605062]
  40. J Acquir Immune Defic Syndr. 2018 Dec 15;79(5):543-550 [PMID: 30222659]
  41. Public Health Rep. 2005 Jan-Feb;120(1):84-8 [PMID: 15736336]
  42. JAMA. 2009 Feb 25;301(8):848-57 [PMID: 19244192]
  43. J Infect Dis. 2017 Dec 1;216(suppl_9):S820-S823 [PMID: 29029155]

Grants

  1. R25 AI140490/NIAID NIH HHS
  2. P30 AI117970/NIAID NIH HHS
  3. R01 DA030747/NIDA NIH HHS
  4. K24 AI134359/NIAID NIH HHS
  5. P30 AI042853/NIAID NIH HHS

MeSH Term

District of Columbia
Drug Resistance, Viral
HIV Infections
HIV-1
Humans
Phylogeny
Social Justice

Word Cloud

Created with Highcharts 10.0.0resistanceHIVparticipantsdrugJIpopulationsprevalencephylogeneticcommunityDCthresholdsanalysisreentryNGS20%5%identifyclusterspopulationtreatmentDrugtransmissionnetworksvulnerablepreventioninterventionsperiodanalyzedspecimensstudyWashingtonDCthreemolecularwithinextendedsequencesdatarespectivelyAmongnewincludedJustice-involvedbeardisproportionateburdeninfectionriskpooroutcomesemergenceinferenceunderstudiedcaninformcareparticularlyaroundcriticalbankedbloodCARE+Correctionsacrosstimepointsconductedtestingusingnext-generationsequencingprevalentevolvingPhylogeneticusedpubliclyavailablesequence5499transmitted14%acquired47%57%overall43%52%34sampledlongitudinally21%-35%accumulated10-17mutationsmean43months11%foundidentified46%2221alsopublicly-availableoneJI-onlyuniquedyadfirsthighaccumulationsuggestsintegrationnon-JIsupportneedeffectivetimelyimprovebroadersurveillanceeffortsResistanceTransmissionNetworksJustice-InvolvedPopulationTimeCommunityReentryjustice

Similar Articles

Cited By